Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Complex number arithmetic
Complex Numbers: (lesson 2 of 2)

Polar representation

Polar representation of complex numbers

polar representation of complex number

In polar representation a complex number z is represented by two parameters r and Θ. Parameter r is the modulus of complex number and parameter Θ is the angle with the positive direction of x-axis.

The polar form of a complex number is:
z=r(cosθ+isinθ)z = r(\cos \theta + i\sin \theta )

This representation is very useful when we multiply or divide complex numbers.

Polar to Rectangular Form Conversion

Here we know r and Θ and we need to find a and b.

Example 1:

Convert the complex number z=4(cos60isin60)z = 4(\cos {60^ \circ } - i\sin {60^ \circ }) to rectangular form.

Solution:

z=4(cos60isin60)=4(12i32)=223iz = 4(\cos {60^ \circ } - i\sin {60^ \circ }) = 4\left( {\frac{1}{2} - i\frac{{\sqrt 3 }}{2}} \right) = 2 - 2\sqrt {3i}


Exercise 1: Convert to rectangular form:

Level 1

2(cos30isin30)= \color{blue}{2(\cos {30^ \circ } - i\sin {30^ \circ }) = } 13i 1 - \sqrt 3 i
3i \sqrt 3 - i
1i 1-i
3+i \sqrt 3 + i

Level 2

4(cos120+isin120)= \color{blue}{4(\cos {120^ \circ } + i\sin {120^ \circ }) = } 232i 2\sqrt 3 - 2i
23+2i 2\sqrt 3 + 2i
43+4i 4\sqrt 3 + 4i
22i3 2 - 2i\sqrt 3

Rectangular to Polar Form Conversion

Here we know a and b and we need to find r and Θ. In this case we need to use formulas:

r=a2+b2r = \sqrt {{a^2} + {b^2}} tgθ=batg\theta = \frac{b}{a}

Example 2:

Convert the complex number z=223iz = 2 - 2\sqrt {3i} to polar form.

Solution:

In this example a=2a = 2 b=23b = - 2\sqrt 3 :

r=a2+b2=22+(23)2=4+12=4r = \sqrt {{a^2} + {b^2}} = \sqrt {{2^2} + {{( - 2\sqrt 3 )}^2}} = \sqrt {4 + 12} = 4 tgθ=ba=232=3θ=60tg\theta = \frac{b}{a} = \frac{{ - 2\sqrt 3 }}{2} = - \sqrt 3 \Rightarrow \theta = - {60^ \circ }

The polar form is:

z=4(cos(60)+isin(60))=4(cos60isin60)z = 4(\cos ( - {60^ \circ }) + i\sin ( - {60^ \circ })) = 4(\cos {60^ \circ } - i\sin {60^ \circ })

Exercise 2: Convert to polar form:

Level 1

1+i= \color{blue}{1+i=} 2(cos45isin45) \sqrt 2 (\cos {45^ \circ } - i\sin {45^ \circ })
2(cos30+isin30) \sqrt 2 (\cos {30^ \circ } + i\sin {30^ \circ })
2(cos45+isin45) \sqrt 2 (\cos {45^ \circ } + i\sin {45^ \circ })
2(cos30isin30) \sqrt 2 (\cos {30^ \circ } - i\sin {30^ \circ })

Level 2

3i= \color{blue}{\sqrt 3 - i = } 2(cos120isin120) 2(\cos {120^ \circ } - i\sin {120^ \circ })
2(cos120+isin120) 2(\cos {120^ \circ } + i\sin {120^ \circ })
2(cos60+isin60) 2(\cos {60^ \circ } + i\sin {60^ \circ })
2(cos60isin60) 2(\cos {60^ \circ } - i\sin {60^ \circ })

Product in polar representation

r(cosθisinθ)r(cosθtisinθt)=rrt(cos(θ+θt)+isin(θ+θt))r(\cos \theta - i\sin \theta ) \cdot r(\cos {\theta ^t} - i\sin {\theta ^t}) = r \cdot {r^t}(\cos (\theta + {\theta ^t}) + i\sin (\theta + {\theta ^t}))

Example 3:

Let z1=2(cos30+isin30){z_1} = 2(\cos {30^ \circ } + i\sin {30^ \circ }), z2=3(cos120+isin120){z_2} = 3(\cos {120^ \circ } + i\sin {120^ \circ }). Then:

z1z2=23(cos(30+120)+isin(30+120))=6(cos150+isin150){z_1} \cdot {z_2} = 2 \cdot 3(\cos ({30^ \circ } + {120^ \circ }) + i\sin ({30^ \circ } + {120^ \circ })) = 6(\cos {150^ \circ } + i\sin {150^ \circ })

Quotient two complex numbers in polar representation

r(cosτ+isinτ)rt(cosθ+isinθ)=rrt(cos(τθ)+isin(τθ))\frac{{r(\cos \tau + i\sin \tau )}}{{{r^t}(\cos \theta + i\sin \theta )}} = \frac{r}{{{r^t}}}(\cos (\tau - \theta ) + i\sin (\tau - \theta ))

Example 4:

Let z1=2(cos30+isin30){z_1} = 2(\cos {30^ \circ } + i\sin {30^ \circ }), z2=3(cos120+isin120){z_2} = 3(\cos {120^ \circ } + i\sin {120^ \circ }). Then:

z1z2=23(cos(30120)+isin(30120))=\frac{{{z_1}}}{{{z_2}}} = \frac{2}{3}(\cos ({30^ \circ } - {120^ \circ }) + i\sin ({30^ \circ } - {120^ \circ })) = =23(cos(90)+isin(90))= = \frac{2}{3}(\cos ( - {90^ \circ }) + i\sin ( - {90^ \circ })) = =23(cos90isin90) = \frac{2}{3}(\cos {90^ \circ } - i\sin {90^ \circ })

Exercise 3: Find product and quotient:

Level 1

z1=2(cos135+isin135)z2=4(cos45+isin45)z1z2= \color{blue}{ \begin{align} &z_1 = 2(\cos {135^ \circ } + i\sin {135^ \circ }) \\ & z_2 = 4(\cos {45^ \circ } + i\sin {45^ \circ }) \\ &z_1 \cdot {z_2} = \end{align} } 8 8
8i 8i
8i -8i
8 -8

Level 2

z1=2(cos135+isin135)z2=4(cos45+isin45)z1z2= \color{blue}{{z_1} = 2(\cos {135^ \circ } + i\sin {135^ \circ }){z_2} = 4(\cos {45^ \circ } + i\sin {45^ \circ })\frac{{{z_1}}}{{{z_2}}} = } 12i - \frac{1}{2}i
2i - 2 \cdot i
2i 2 \cdot i
12i \frac{1}{2}i

The inverse of a complex number in polar representation

1r(cosθ+isinθ)=1r(cosθisinθ)\frac{1}{{r(\cos \theta + i\sin \theta )}} = \frac{1}{r}(\cos \theta - i\sin \theta )

Conjugate numbers in polar representation

r(cosθ+isinθ)=r(cosθisinθ)\overline {r(\cos \theta + i\sin \theta )} = r(\cos \theta - i\sin \theta )

Formula 'De Moivre'

(cosθ+isinθ)n=cos(nθ)+isin(nθ){(\cos \theta + i\sin \theta )^n} = \cos (n\theta ) + i\sin (n\theta )

Example 5:

Let z = 1 - i.

a) find polar representation

b) find z8

Solution:

a) z=2(cos45+isin45)z = \sqrt 2 (\cos {45^ \circ } + i\sin {45^ \circ })

b) z8=[2(cos45+isin45)]8=28(cos45+isin45)8=24(cos(845)+isin(845))=16(cos360+isin360)=16(1+i0)=16{z^8} = {\left[ {\sqrt 2 (\cos {{45}^ \circ } + i\sin {{45}^ \circ })} \right]^8} = {\sqrt 2 ^8} \cdot {(\cos {45^ \circ } + i\sin {45^ \circ })^8} = {2^4} \cdot (\cos (8 \cdot {45^ \circ }) + i\sin (8 \cdot {45^ \circ })) = 16(\cos {360^ \circ } + isin{360^ \circ }) = 16(1 + i \cdot 0) = 16

Exercise 4: Find zn:

Level 1

z=2(cos30+isin30)z9= \color{blue}{z = 2(\cos {30^ \circ } + i\sin {30^ \circ }) {z^9} =} i -i
i i
1 1
1 -1

Level 2

$$ \color{blue}{z = \sqrt 3 + i {z^6} = $$ \end{array}}
1 -1
i i
1 1