Trigonometry: (lesson 2 of 3)
Trigonometric Equations
Very, very important formula:
1: sinα=sinβ2: cosα=cosβ⇒α=β+2kπ orα=−β+2kπ3: tanα=tanβ⇒α=β+kπ
Basic trigonometric equations:
Example 1:
sin(x)=21
Solution: We know that the sin6π=21 and therefore
sin(x)=sin(6π)→formula1x=6π+2kπ orx=65π+2kπ
Example 2:
cos(x)=22
Solution: We know that the cos(4π)=22 and therefore
cos(x)=cos(4π)→formula2x=4π+2kπ orx=−4π+2kπ
Example 3:
tan(x)=3
Solution : We know that the tan3π=3 and therefore
tan(x)=tan(3π)→formula3x=3π+kπ
Advanced trigonometric equations
Example 4:
2sin(2x)−1=0
Solution:
Step 1: To solve for x, you must first isolate the sine term.
2sin(2x)−12sin(2x)sin(2x)=0=1=21
Step 2: We know that sin(6π)=21 and therefore
sin(2x)=sin(6π)→formula12x=6π+kπor→x=12π+kπor2x=65π+2kπx=125π+kπ
Example 5:
3(tan(x))2=1
Solution:
Step 1: To solve for x, firstly, you must isolate the tangent term.
3(tan(x))2(tan(x))2tan(x)tan(x)tan(x)=1=31=±31=±3133=±33
Step 2:
We know that tan(6π)=33 and
tan(−6π)=−33, therefore
tan(x)=tan(6π)tan(x)=tan(−6π)⇒x=6π+kπ and⇒x=−6π+kπ
Example 6:
2cos(2x−3π)=1
Solution
Step 1: To solve for x, firstly, you must isolate the cosine term.
2cos(2x−3π)cos(2x−3π)=1=21
Step 2: We know that cos(3π)=21, therefore
cos(2x−3π)=cos(3π)→formula22x−3π+2kπ or→2x=6π+2kπ or→x=12π+kπ or2x−3π=−3π+2kπ2x=0+2kπx=kπ