Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Trigonometric Formulas
Trigonometry: (lesson 2 of 3)

Trigonometric Equations

Very, very important formula:

1: sinα=sinβ2: cosα=cosβα=β+2kπ orα=β+2kπ3: tanα=tanβα=β+kπ \begin{aligned} &\color{red}{1}:\ \sin \alpha = \sin \beta \\ &\color{red}{2}:\ \cos \alpha = \cos \beta \Rightarrow \alpha = \beta + 2k\pi \ or \\ &\hspace{4.5cm} \alpha = - \beta + 2k\pi \\ &\color{red}{3}:\ \tan \alpha = \tan \beta \Rightarrow \alpha = \beta + k\pi \end{aligned}

Basic trigonometric equations:

Example 1:

sin(x)=12 \begin{aligned} \sin (x) = \frac{1}{2} \end{aligned}

Solution: We know that the sinπ6=12\sin\frac{\pi}{6}=\frac{1}{2} and therefore

sin(x)=sin(π6)formula1x=π6+2kπ orx=5π6+2kπ \begin{aligned} \sin (x) = \sin ( \frac{\pi }{6} )\mathop \to \limits^{\color{red}{formula1}} &x = \frac{\pi }{6} + 2k\pi \ or \\ &x = \frac{5\pi}{6} + 2k\pi \end{aligned}

Example 2:

cos(x)=22 \begin{aligned} \cos (x) = \frac{\sqrt 2 }{2} \end{aligned}

Solution: We know that the cos(π4)=22\cos ( \frac{\pi}{4} ) = \frac{\sqrt 2}{2} and therefore

cos(x)=cos(π4)formula2x=π4+2kπ orx=π4+2kπ \begin{aligned} \cos (x) = \cos ( \frac{\pi }{4} )\mathop \to \limits^{\color{red}{formula2}} &x = \frac{\pi}{4} + 2k\pi \ or \\ &x = -\frac{\pi}{4} + 2k\pi \end{aligned}

Example 3:

tan(x)=3 \begin{aligned} \tan (x) = \sqrt {3} \end{aligned}

Solution : We know that the tanπ3=3\tan {\frac{\pi}{3}} = \sqrt{3} and therefore

tan(x)=tan(π3)formula3x=π3+kπ \begin{aligned} \tan (x) = \tan ( \frac{\pi}{3} )\mathop \to \limits^{\color{red}{formula3}} &x = \frac{\pi}{3} + k\pi \end{aligned}

Advanced trigonometric equations

Example 4:

2sin(2x)1=0 \begin{aligned} 2\sin(2x) - 1 = 0 \end{aligned}

Solution:

Step 1: To solve for xx, you must first isolate the sine term.

2sin(2x)1=02sin(2x)=1sin(2x)=12 \begin{aligned} 2\sin(2x) - 1 &= 0 \\ 2\sin(2x) &= 1 \\ \sin(2x) &= \frac{1}{2} \end{aligned}

Step 2: We know that sin(π6)=12\sin(\frac{\pi}{6}) = \frac{1}{2} and therefore

sin(2x)=sin(π6)formula12x=π6+kπorx=π12+kπor2x=5π6+2kπx=5π12+kπ \begin{aligned} \sin (2x) = \sin ( \frac{\pi}{6} )\mathop \to \limits^{\color{red}{formula1}} &2x = \frac{\pi}{6} + k\pi \hspace{0.5cm} \text{or} \hspace{0.5cm} \to x = \frac{\pi}{12} + k\pi \hspace{0.5cm} \text{or} \\ &2x = \frac {5\pi}{6} + 2k\pi \hspace{1.7cm} x = \frac{5\pi}{12} + k\pi \end{aligned}

Example 5:

3(tan(x))2=1 3 (\tan(x))^2 = 1

Solution:

Step 1: To solve for xx, firstly, you must isolate the tangent term.

3(tan(x))2=1(tan(x))2=13tan(x)=±13tan(x)=±1333tan(x)=±33 \begin{aligned} 3 (\tan(x))^2 &= 1 \\ (\tan(x))^2 &= \frac{1}{3} \\ \tan (x) &= \color{red}{\pm} \sqrt {\frac{1}{3}} \\ \tan (x) &= \pm \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \\ \tan (x) &= \pm \frac{\sqrt{3}}{3} \end{aligned}

Step 2: We know that tan(π6)=33\tan (\frac{\pi}{6}) = \frac{\sqrt{3}}{3} and tan(π6)=33\tan (-\frac{\pi}{6}) = - \frac{\sqrt{3}}{3}, therefore

tan(x)=tan(π6)x=π6+kπ andtan(x)=tan(π6)x=π6+kπ \begin{aligned} \tan (x) = \tan (\frac{\pi }{6}) &\Rightarrow x = \frac{\pi }{6} + k\pi \ \text{and} \\ \tan (x) = \tan (-\frac{\pi }{6}) &\Rightarrow x = -\frac{\pi }{6} + k\pi \end{aligned}

Example 6:

2cos(2xπ3)=12 \cos(2x - \frac{\pi}{3}) = 1

Solution

Step 1: To solve for xx, firstly, you must isolate the cosine term.

2cos(2xπ3)=1cos(2xπ3)=12 \begin{aligned} 2\cos(2x - \frac{\pi}{3}) &= 1 \\ \cos (2x - \frac{\pi}{3}) &= \frac{1}{2} \end{aligned}

Step 2: We know that cos(π3)=12\cos (\frac{\pi}{3}) = \frac{1}{2}, therefore

cos(2xπ3)=cos(π3)formula22xπ3+2kπ or2x=π6+2kπ orx=π12+kπ or2xπ3=π3+2kπ2x=0+2kπx=kπ \begin{aligned} \cos (2x - \frac{\pi }{3}) = \cos (\frac{\pi }{3})\mathop \to \limits^{\color{red}{formula2}} &2x - \frac{\pi }{3} + 2k\pi \ \text{or} \to 2x = \frac{\pi}{6} + 2k\pi \ \text{or} \to x = \frac{\pi}{12}+k\pi \ \text{or} \\ &2x - \frac{\pi}{3} = -\frac{\pi}{3} + 2k\pi \hspace{1cm} 2x = 0 + 2k\pi \hspace{1cm} x = k\pi \end{aligned}