Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Math formulas: Complex numbers

0 formulas included in custom cheat sheet

Definitions:

A complex number is written as a+bi a + b\,i where a a and b b are real numbers an i i , called the imaginary unit, has the property that i2=1 i^2 = -1 .

The complex numbers z=a+bi z = a + b\,i and z=abi \overline{z} = a - b\,i are called complex conjugate of each other.

Formulas:

Equality of complex numbers

a+bi=c+dia=c  and  b=d a + b\,i = c + d\,i \Longleftrightarrow a = c ~~and~~ b = d

Addition of complex numbers

(a+bi)+(c+di)=(a+c)+(b+d)i (a + b\,i) + (c + d\,i) = (a + c) + (b + d)\,i

Subtraction of complex numbers

(a+bi)(c+di)=(ac)+(bd)i (a + b\,i) - (c + d\,i) = (a - c) + (b - d)\,i

Multiplication of complex numbers

(a+bi)(c+di)=(acbd)+(ad+bc)i (a + b\,i)\cdot(c + d\,i) = (ac - bd) + (ad + bc)\,i

Division of complex numbers

a+bic+di=a+bic+dicdicdi=ac+bdc2+d2+bcadc2+d2i \frac{a + b\,i}{c + d\,i} = \frac{a + b\,i}{c + d\,i}\cdot\frac{c - d\,i}{c - d\,i} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2} \, i

Polar form of complex numbers

a+bi=r(cosθ+isinθ) a + b\,i = r\cdot(\cos\theta + i\,\sin\theta)

Multiplication and division of complex numbers in polar form

[r1(cosθ1+isinθ1)][r2(cosθ2+isinθ2)]=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]\left[r_1\left(\cos\theta_1 + i \cdot \sin\theta_1\right)\right] \cdot \left[r_2\left(\cos\theta_2 + i \cdot \sin\theta_2\right)\right] = r_1 \cdot r_2 \left[ \cos\left(\theta_1+\theta_2\right) + i \cdot \sin\left(\theta_1+\theta_2\right) \right]
r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)=r1r2[cos(θ1θ2)+isin(θ1θ2)]\frac{r_1\left(\cos\theta_1 + i\,\sin\theta_1\right)}{r_2\left(\cos\theta_2 + i\,\sin\theta_2\right)}= \frac{r_1}{r_2} \left[\cos\left(\theta_1-\theta_2\right) + i \cdot \sin\left(\theta_1-\theta_2\right)\right]

De Moivre's theorem

[r(cosθ+isinθ)]n=rn(cos(nθ)+isin(nθ)) \left[r \left( \cos\theta + i\,\sin\theta \right) \right]^n = r^n \left( \cos ( n\theta) + i\,\sin (n\theta) \right)

Roots of complex numbers

[r(cosθ+isinθ)]1/n=r1/n(cosθ+2kπn+isinθ+2kπn)  k=0,1,,n1 \left[r \left( \cos\theta + i\,\sin\theta \right) \right]^{1/n} = r^{1/n} \left( \cos \frac{\theta + 2k\pi}{n} + i\,\sin \frac{\theta + 2k\pi}{n} \right) ~~ k=0,1,\dots, n-1

Was these formulas helpful?

Yes No