Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Limit of Irrational Functions
Limits: (lesson 4 of 5)

Limits of Trigonometric Functions

Important limits:

limx0sinxx=1Example: limx0sin3xx=limx03sin3x3x=31=3 \begin{aligned} &\color{blue}{\mathop {\lim }\limits_{x \to 0} \frac{\sin x}{x} = 1} \\ \text{Example:} \ &\mathop {\lim }\limits_{x \to 0} \frac{\sin 3x}{x} = \mathop {\lim }\limits_{x \to 0} \frac{3 \sin{3x}}{3x} = 3 \cdot 1 = 3 \\ \end{aligned}

limx01cosxx=0 \color{blue}{\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos x}}{x} = 0}

Example

Find the limit:

limx0tanxx=0 \mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{x} = 0

Solution

Direct substitution gives the indeterminate form 00\frac{0}{0}. This problem can still be solved, however, by writing tanx\tan x as sinxcosx\frac{\sin x}{cos x}.

limx0tanxx=limx0(sinxx)(1cosx)=limx0sinxxlimx01cosx=1 \begin{aligned} &\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin x}}{x}} \right)\left( {\frac{1}{{\cos x}}} \right) \\ &= \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} \cdot \mathop {\lim }\limits_{x \to 0} \frac{1}{{\cos x}} = 1 \end{aligned}