Exponential Functions: (lesson 3 of 3)
Logarithmic Functions
Properties of natural logarithmic function
1. ln1=lne0=0
2. lne=lne1=1
3. lne1=lne−1=−1
4. lnex=x
5. lnelnx=x (for x>0)
6. bx=exlnb (for b>0)
7. lnxy=lnx+lny
8. ln(yx)=lnx−lny
9. ln(xn)=nlnx
10. logax=lnalnx (for a>0, a=1, x>0)
Derivatives of Logarithmic Functions
1. dxd[lnx]=x1 (for x>0)
2. dxd[lnf(x)]=f(x)f′(x) (for f(x)>0)
3. dxd[ax]=dxd[exlna]=exlna⋅lna=(lna)ax
4. dxd[af(x)]=dxd[ef(x)lna]=ef(x)lna⋅lna⋅f′(x)=(lna)af(x)⋅f′(x)
5. dxd[logax]=dxd[lnalnx]=(lna)x1
6. dxd[logaf(x)]=dxd[lnalnf(x)]=(lna)f(x)f′(x)
Example 1 (formula 3):
dxd[2x]=dxd[exln2]=exln2⋅ln2=(ln2)2x
Example 2 (formula 4):
dxd[53x2+1]=dxd[e(3x2+1)ln5]=e(3x2+1)ln5⋅(6x)(ln5)=6x(ln5)53x2+1
Example 3 (formula 5):
dxd[log5x]=dxd[ln5lnx]=(ln5)x1
Example 4 (formula 6):
dxd[log2(x3+1)]=dxd[ln2ln(x3+1)]=(ln2)(x3+1)3x2
Logarithmic Differentiation
Use logarithmic differentiation to differentiate the function f(x)=xx.
f(x)(lnf(x))′f(x)f′(x)=xx⇒lnf(x)=lnxx=xlnx=f(x)f′(x)=x⋅x1+1⋅lnx=1+lnx⇒lnf′(x)=f(x)(1+lnx)=xx(1+lnx)⇒lnf(x)=lnxx=xlnx=x⋅x1+1⋅lnx=1+lnx⇒f′(x)=f(x)(1+lnx)=xx(1+lnx)