Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Exponential Equations
Exponential Functions: (lesson 3 of 3)

Logarithmic Functions

Properties of natural logarithmic function

1. ln1=lne0=0\ln1 = \ln{e^0} = 0

2. lne=lne1=1\ln{e} = \ln{e^1} = 1

3. ln1e=lne1=1\ln{\frac{1}{e}} = \ln{e^{-1}} = -1

4. lnex=x\ln{e^x} = x

5. lnelnx=x\ln{e^{ln \, x}} = x (for x>0x > 0)

6. bx=exlnbb^x = e^{x \ln{b}} (for b>0b > 0)

7. lnxy=lnx+lny\ln{xy} = \ln{x} + \ln{y}

8. ln(xy)=lnxlny\ln \left( {\frac{x}{y}} \right) = \ln x - \ln y

9. ln(xn)=nlnx\ln {( x^n )} = n\ln x

10. logax=lnxlna{\log _a}x = \frac{\ln x}{\ln a} (for a>0a > 0, a1a \ne 1, x>0x > 0)

Derivatives of Logarithmic Functions

1. ddx[lnx]=1x\frac{d}{dx}\left[ {\ln x} \right] = \frac{1}{x} (for x>0x > 0)

2. ddx[lnf(x)]=f(x)f(x)\frac{d}{dx}\left[ {\ln f(x)} \right] = \frac{f'(x)}{f(x)} (for f(x)>0f(x) > 0)

3. ddx[ax]=ddx[exlna]=exlnalna=(lna)ax\frac{d}{dx}\left[ {a^x} \right] = \frac{d}{dx}\left[ e^{x\ln a} \right] = e^{x\ln a} \cdot \ln a = (\ln a){a^x}

4. ddx[af(x)]=ddx[ef(x)lna]=ef(x)lnalnaf(x)=(lna)af(x)f(x)\frac{d}{dx}\left[ {{a^{f(x)}}} \right] = \frac{d}{{dx}}\left[ {{e^{f(x)\ln a}}} \right] = {e^{f(x)\ln a}} \cdot \ln a \cdot f'(x) = (\ln a){a^{f(x)}} \cdot f'(x)

5. ddx[logax]=ddx[lnxlna]=1(lna)x\frac{d}{dx}\left[ {{{\log }_a}x} \right] = \frac{d}{dx}\left[ {\frac{\ln x}{\ln a}} \right] = \frac{1}{(\ln a)x}

6. ddx[logaf(x)]=ddx[lnf(x)lna]=f(x)(lna)f(x)\frac{d}{{dx}}\left[ {{\log }_a f(x)} \right] = \frac{d}{dx}\left[ {\frac{\ln f(x)}{\ln a}} \right] = \frac{f'(x)}{(\ln a)f(x)}

Example 1 (formula 3):

ddx[2x]=ddx[exln2]=exln2ln2=(ln2)2x\frac{d}{dx}\left[ {2^x} \right] = \frac{d}{dx}\left[ {e^{x\ln 2}} \right] = {e^{x\ln 2}} \cdot \ln 2 = (\ln 2){2^x}

Example 2 (formula 4):

ddx[53x2+1]=ddx[e(3x2+1)ln5]=e(3x2+1)ln5(6x)(ln5)=6x(ln5)53x2+1\frac{d}{dx}\left[ {{5^{3{x^2} + 1}}} \right] = \frac{d}{dx}\left[ {{e^{(3{x^2} + 1)\ln 5}}} \right] = {e^{(3{x^2} + 1)\ln 5}} \cdot (6x)(\ln 5) = 6x(\ln 5){5^{3{x^2} + 1}}

Example 3 (formula 5):

ddx[log5x]=ddx[lnxln5]=1(ln5)x\frac{d}{dx}\left[ {{{\log }_5}x} \right] = \frac{d}{dx}\left[ {\frac{\ln x}{\ln 5}} \right] = \frac{1}{(\ln 5)x}

Example 4 (formula 6):

ddx[log2(x3+1)]=ddx[ln(x3+1)ln2]=3x2(ln2)(x3+1)\frac{d}{dx}\left[ {{{\log }_2}({x^3} + 1)} \right] = \frac{d}{{dx}}\left[ {\frac{{\ln ({x^3} + 1)}}{{\ln 2}}} \right] = \frac{{3{x^2}}}{{(\ln 2)({x^3} + 1)}}

Logarithmic Differentiation

Use logarithmic differentiation to differentiate the function f(x)=xxf(x) = x^x.

f(x)=xxlnf(x)=lnxx=xlnx(lnf(x))=f(x)f(x)=x1x+1lnx=1+lnxlnf(x)=f(x)(1+lnx)=xx(1+lnx)lnf(x)=lnxx=xlnxf(x)f(x)=x1x+1lnx=1+lnxf(x)=f(x)(1+lnx)=xx(1+lnx) \begin{aligned} f(x) &= {x^x} \Rightarrow \color{blue}{\ln f(x) = \ln {x^x} = x\ln x}\\ \color{blue}{(\ln f(x))'} &= \frac{f'(x)}{f(x)} = x \cdot \frac{1}{x} + 1 \cdot \ln x = 1 + \ln x \\ &\Rightarrow \ln f'(x) = f(x) (1 + \ln x ) = x^x (1 + \ln x) \\ &\Rightarrow \ln f(x) = \ln {x^x} = x\ln x \\ \frac{f'(x)}{f(x)} &= x \cdot \frac{1}{x} + 1 \cdot \ln x = 1 + \ln x \\ &\Rightarrow f'(x) = f(x) (1 + \ln x) = x^x (1 + \ln x) \end{aligned}