Analytic geometry of three dimensions: (lesson 2 of 2)
Planes
Plane through
( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) ( x 0 , y 0 , z 0 ) and perpendicular to
the direction ( a , b , c ) (a, b, c) ( a , b , c ) :
a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0 a (x - x_0) + b (y - y_0) + c (z - z_0) = 0 a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0
Example 1
Find the equation for the plane through the point ( 0 , 1 , 2 ) (0, 1, 2) ( 0 , 1 , 2 ) perpendicular to the vector ( 2 , 1 , − 3 ) (2, 1, -3) ( 2 , 1 , − 3 ) .
Solution:
( x 0 , y 0 , z 0 ) = ( 0 , 1 , 2 ) (x_0, y_0, z_0) = (0, 1, 2) ( x 0 , y 0 , z 0 ) = ( 0 , 1 , 2 )
( a , b , c ) = ( 2 , 1 , − 3 ) (a, b, c) = (2, 1, -3) ( a , b , c ) = ( 2 , 1 , − 3 )
The plane: 2 ( x − 0 ) + 1 ( y − 1 ) − 3 ( z − 2 ) = 0 2 (x - 0) + 1 (y - 1) - 3 (z - 2) = 0 2 ( x − 0 ) + 1 ( y − 1 ) − 3 ( z − 2 ) = 0
2 x + y − 3 z = − 5 2x + y -3z = -5 2 x + y − 3 z = − 5 .
Plane through
( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) ( x 0 , y 0 , z 0 ) ,
( x 1 , y 1 , z 1 ) (x_1, y_1, z_1) ( x 1 , y 1 , z 1 ) and
( x 2 , y 2 , z 2 ) (x_2, y_2, z_2) ( x 2 , y 2 , z 2 ) :
\left| { } \right| = 0
Example 2:
Find the equation for the plane through the points ( 0 , 1 , 2 ) (0, 1, 2) ( 0 , 1 , 2 ) , ( 2 , 1 , 3 ) (2, 1, 3) ( 2 , 1 , 3 ) and ( 3 , 1 , 0 ) (3, 1, 0) ( 3 , 1 , 0 )
Solution:
Plane through
( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) ( x 0 , y 0 , z 0 ) and parallel to the vectors
( a 1 , b 1 , c 1 ) (a_1, b_1, c_1) ( a 1 , b 1 , c 1 ) and
( a 2 , b 2 , c 2 ) (a_2, b_2, c_2) ( a 2 , b 2 , c 2 ) :
\left| { } \right| = 0
Plane through
( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) ( x 0 , y 0 , z 0 ) and
( x 1 , y 1 , z 1 ) (x_1, y_1, z_1) ( x 1 , y 1 , z 1 ) and parallel to the direction ( a , b , c ) (a, b, c) ( a , b , c ) :
\left| { } \right| = 0
The distance from the point
( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) ( x 0 , y 0 , z 0 ) to the plane a x + b y + c z + d = 0 ax + by + cz + d = 0 a x + b y + cz + d = 0
is
d = ∣ a x 0 + b x 0 + c z 0 ∣ a 2 + b 2 + c 2
d = \frac{{\left| {a{x_0} + b{x_0} + c{z_0}} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}
d = a 2 + b 2 + c 2 ∣ a x 0 + b x 0 + c z 0 ∣
The angle between two planes
a 0 x + b 0 y + c 0 z + d 0 = 0 a_0 x + b_0 y +c_0 z + d_0 = 0 a 0 x + b 0 y + c 0 z + d 0 = 0 and
a 1 x + b 1 y + c 1 z + d 1 = 0 a_1 x + b_1 y +c_1 z + d_1 = 0 a 1 x + b 1 y + c 1 z + d 1 = 0 is
φ = arccos a 0 a 1 + b 0 b 1 + c 0 c 1 a 0 2 + b 0 2 + c 0 2 a 1 2 + b 1 2 + c 1 2
\varphi = \arccos \frac{{a0a1 + b0b1 + c0c1}}{{\sqrt {{a_0}^2 + {b_0}^2 + {c_0}^2} \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }}
φ = arccos a 0 2 + b 0 2 + c 0 2 a 1 2 + b 1 2 + c 1 2 a 0 a 1 + b 0 b 1 + c 0 c 1
Two planes are parallel if their normal vectors are parallel (constant
multiples of one another). It is easy to recognize parallel planes written in
the form a x + b y + c z = d ax + by + cz = d a x + b y + cz = d , since a quick comparison of the
normal vectors n = < a , b , c > n=< a, b, c > n =< a , b , c > can be made.