Rational Expressions: (lesson 2 of 3)
Multiplying and Dividing Rational Expressions
Multiplication
To Multiply a rational expression:
1. Factor all numerators and denominators.
2. Cancel all common factors.
3. Either multiply the denominators and numerators together or leave the solution in factored form.
Example 1
Multiply and then simplify the product
x2x+4⋅6x+123
Solution
Example 2
Multiply the following rational expressions:
x2−9x2+6x+9⋅x2+2x−33x−9
Solution
1: Factor all numerators and denominators:
x2−9x2+6x+9⋅x2+2x−33x−9=(x−3)(x+3)(x+3)(x+3)⋅(x+3)(x−1)3(x−3)
2: Cancel all common factors:
x2−9x2+6x+9⋅x2+2x−33x−9=(x−3)(x+3)(x+3)(x+3)⋅(x+3)(x−1)3(x−3)
3: Multiply the denominators and numerators:
x2−9x2+6x+9⋅x2+2x−33x−9=(x−3)(x+3)(x+3)(x+3)⋅(x+3)(x−1)3(x−3)=11⋅x−13=x−13
Division of rational expressions
When we divide rational functions we multiply by the reciprocal.
Example 3:
Perform the indicated operations:
x2−2x−82x2+x−6:x2−3x−42x2−x−3
Solution 3:
x2−2x−82x2+x−6:x2+3x−42x2−x−3=
=x2−2x−82x2+x−6⋅2x2−x−3x2−3x−4=
=(x+2)(x−4)2(x−23)(x+2)⋅2(x−23)(x+1)(x−4)(x+1)=
=(x+2)(x−4)(2x−3)(x+2)⋅(2x−3)(x+1)(x−4)(x+1)=1
Example 4:
Perform the indicated operations:
4x−123x+122x−6x+4
Solution 4:
4x−123x+122x−6x+4=2x−6x+4⋅3x+124x−12=
=2(x−3)x+4⋅3(x+4)4(x−3)=21⋅34=32