Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
Applications Of The Definite Integrals: (lesson 1 of 3)

Area Between Two Curves

The area between the curves y=f(x)y = f(x) and y=g(x)y = g(x) between x=ax = a and x=b  (a<b)x = b \ \ (a < b) is given by

A=abf(x)g(x)dx A = \int\limits_a^b {\left| {f(x) - g(x)} \right|dx}

Example 1:

Find the area of the region bounded by the graphs of f(x)=2x2f(x) = 2 - x^2 and g(x)=xg(x) = x

Solutions:

Area solution

The two lines intersect at the points (2,2)(-2, -2) and (1,1)(1, 1) since

f(x)=g(x)2x2=xx2+x2=0x=2,1 f(x) = g(x) \leftrightarrow 2 - x^2 = x \leftrightarrow x^2 + x - 2 = 0 \leftrightarrow x = -2 , 1

Thus, the area is

A=abf(x)g(x)dx=212x2xdx=21(2x2x)dx==[x33x22+2x]21==92 \begin{aligned} A &= \int\limits_a^b {\left| {f(x) - g(x)} \right|dx = \int\limits_{ - 2}^1 {\left| {2 - {x^2} - x} \right|dx} } = \int\limits_{ - 2}^1 {(2 - {x^2} - x)dx} = \\ &= \left[ { - \frac{x^3}{3} - \frac{x^2}{2} + 2x} \right]_{ - 2}^1 = \\ &= \frac{9}{2} \end{aligned}

Example 2:

Find the area of the region bounded by the graphs of f(x)=3x3x210xf(x) = 3x^3 - x^2 - 10x and g(x)=x2+2xg(x) = -x^2 + 2x

Solution:

Area solution

The two lines intersect at the points (2,8)( -2, -8), (0,0)( 0, 0) and (2,0)( 2, 0) since

f(x)=g(x)3x3x210x=x2+2x3x312x=0x=2,0,2 f(x) = g(x) \leftrightarrow 3x^3 - x^2 - 10x = -x^2 + 2x \leftrightarrow 3x^3 - 12x = 0 \leftrightarrow x = -2, 0, 2 .

Thus, the area is

A=22f(x)g(x)dx=20[f(x)g(x)]dx+02[g(x)f(x)]dx==20[3x3x210x(x2+2x)]dx+02[(x2+2x)(3x3x210x)]dx==20(3x312x)dx+02(3x3+12x)dx==[3x446x2]20+[3x44+6x2]02=(1224)+(12+24)=24 \begin{aligned} A &= \int\limits_{ - 2}^2 {\left| {f(x) - g(x)} \right|dx = \int\limits_{ - 2}^0 {\left[ {f(x) - g(x)} \right]dx} } + \int\limits_0^2 {\left[ {g(x) - f(x)} \right]dx} = \\ &= \int\limits_{ - 2}^0 {\left[ {3{x^3} - {x^2} - 10x - ( - {x^2} + 2x)} \right]dx} + \int\limits_0^2 {\left[ {( - {x^2} + 2x) - (3{x^3} - {x^2} - 10x)} \right]dx} = \\ &= \int\limits_{ - 2}^0 {(3{x^3} - 12x)dx} + \int\limits_0^2 {( - 3{x^3} + 12x)dx} = \\ &= \left[ {\frac{{3{x^4}}}{4} - 6{x^2}} \right]_{ - 2}^0 + \left[ {\frac{{ - 3{x^4}}}{4} + 6{x^2}} \right]_0^2 = - (12 - 24) + ( - 12 + 24) = 24 \end{aligned}