Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Trigonometric Equations
Trigonometry: (lesson 3 of 3)

Law of Cosines

The law of cosines is used:

1. to find the third side of a triangle when two sides and the included angle are given.

2. to find an angle when all 3 sides are given.

law of cosines

1. We are given aa, cc, and B\sphericalangle B.

b2=a2+c22accos(B)b=a2+c22accos(B) \begin{aligned} b^2 &= a^2 + c^2 - 2ac\cos(\sphericalangle B) \\ b &= \sqrt{a^2 + c^2 - 2ac\cos(\sphericalangle B)} \end{aligned}

2. We are given sides bb, cc, and A\sphericalangle A.

a=b2+c22bccos(A)a = \sqrt{b^2 + c^2 - 2bc\cos(\sphericalangle A)}

3. We are given sides bb, aa, and C\sphericalangle C.

c=a2+b22abcos(C)c = \sqrt{a^2 + b^2 - 2ab\cos(\sphericalangle C)}

Example 1:

In triangle ABCABC, side a=8cma= 8 cm, c=10cmc = 10 cm, and the angle at B=60B = 60^\circ. Find side bb, angle AA and angle CC.

law of cosines example

Solution:

1. Side bb:

b2=a2+c22accos(B)b=a2+c22accos(B)b=82+1022810cos(60)b=16480b=84=221 \begin{aligned} b^2 &= a^2 + c^2 - 2ac\cos(\sphericalangle B) \\ b &= \sqrt{a^2 + c^2 - 2ac\cos(\sphericalangle B)} \\ b &= \sqrt{8^2 + 10^2 - 2 \cdot 8 \cdot 10 \cdot \cos(\sphericalangle 60^\circ)} \\ b &= \sqrt{164-80} \\ \color{blue}{b} &\color{blue}{=} \color{blue}{\sqrt{84} = 2 \sqrt{21}} \end{aligned}

2. Angle AA

a2=b2+c22bccos(A)82=102+84221084cos(A)64=1842084cos(A)cos(A)=1202084cos(A)=6221=321cos(A)=arccos(321)49.1 \begin{aligned} a^2 &= b^2 + c^2 - 2bc\cos(\sphericalangle A) \\ 8^2 &= 10^2 + {\sqrt{84}}^2 - 2 \cdot 10 \cdot \sqrt{84} \cos(\sphericalangle A) \\ 64 &= 184 - 20 \sqrt{84} \cos(\sphericalangle A) \\ \cos(\sphericalangle A) &= \frac{120}{20 \sqrt{84}} \\ \cos(\sphericalangle A) &= \frac{6}{2\sqrt{21}} = \frac{3}{\sqrt{21}} \\ \color{blue}{\cos(\sphericalangle A)} &\color{blue}{=} \color{blue}{\arccos (\frac{3}{\sqrt{21}}) \approx 49.1^\circ} \end{aligned}

3. Angle CC

A+B+C=180arccos(321)+60+C=180C=120arccos(3sqrt21)12049.1C50.9 \begin{aligned} &\sphericalangle A + \sphericalangle B + \sphericalangle C = 180^\circ \\ &\arccos(\frac{3}{\sqrt{21}}) + 60^\circ + \sphericalangle C = 180^\circ \\ &\sphericalangle C = 120^\circ - \arccos (\frac{3}{\\sqrt{21}}) \approx 120^\circ - 49.1^\circ \\ &\sphericalangle C \approx 50.9^\circ \end{aligned}