Solving Equations: (lesson 1 of 4)
Solving Linear Equations
Equations with no parentheses
Example 1
Solve 5x - 4 - 2x + 3 = -7 - 3x + 5 + 2x
Solution 1
Step 1: Combine the similar terms |
5x−4−2x+3=−7−3x+5+2x |
|
3x−1=−x−2 |
Step 2: Add x to both sides. |
3x−1+x=−x−2+x |
|
4x−1=−2 |
Step 3: Add 1 to both sides. |
4x−1+1=−2+1 |
|
4x=−1 |
Step 4: Divide both sides by 4: |
44x=4−1 |
Solution is: |
x=−41 |
Exercise 1: Solve equations
Equations with parentheses
Example 2
Solve 2(x−4)+4(2−x)=5x−4(x+1)
Solution 2
Step 1: Simplify both sides: |
2(x−4)+4(2−x)=5x−4(x+1) |
|
2x−8+8−4x=5x−4x−4 |
|
−2x=x−4 |
Step 2: Subtract x from both sides. |
−2x−x=x−4−x |
|
−3x=−4 |
Step 3: Divide both sides by -3: |
−3−3x=−3−4 |
Solution is: |
x=34 |
Exercise 2: Solve equations
Equations containing fractions
Example 3
Solve x+21=2x−32
Solution 3
Step 1: Multiply both sides by the LCD. Lowest common multiple of 2 and 3 is 6.
So, we multiply both sides by 6. |
6⋅(x+21)=6⋅(2x−32) |
Step 2: Remove brackets: |
6⋅x+6⋅21=6⋅2x−6⋅32 |
Step3: This problem is similar to the previous |
6x+3=3x−4 |
|
6x+3−3x=3x−4−3x |
|
3x+3=−4 |
|
3x+3−3=−4−3 |
|
3x=−7 |
|
33x=3−7 |
Solution is: |
x=−37 |
Exercise 3: Solve equations
More Complicated Example
Example 4
x+22x=x−104+2
Solution 4
In this case the LCD is (x + 2)(x - 10). Here is the complete solution to this problem.
x+22x=x−104+2
(x+2)(x−10)x+22x=(x+2)(x−10)x−104+(x+2)(x−10)⋅2
(x−10)⋅2x=(x+2)⋅4+2(x2+x−10x−20)
2x2−20x=4x+8+2x2+2x−20x−40
−20x=4x+8+2x−20x−40
−20x=−14x−32
−20x+14x=−14x−32+14x
−6x=−32
x=−6−32
x=316
Much more Complicated Example
Example 5
x+31=x2+5x+6−2x
Solution 4
The first step is to factor the denominators
x+31=(x+3)(x+2)−2x
The LCD is (x + 3)(x + 2). The solution is:
x+31=(x+3)(x+2)−2x
(x+3)(x+2)x+31=(x+3)(x+2)(x+3)(x+2)−2x
x+2=−2x
x+2x=−2
3x=−2
x=−32
Exercise 4: Solve equations