Example 1
Solve 5x - 4 - 2x + 3 = -7 - 3x + 5 + 2x
Solution 1
Step 1: Combine the similar terms |
$5x - 4 - 2x + 3 = - 7 - 3x + 5 + 2x$ |
$3x - 1 = - x - 2$ | |
Step 2: Add x to both sides. |
$3x - 1 + x = - x - 2 + x$ |
$4x - 1 = - 2$ | |
Step 3: Add 1 to both sides. |
$4x - 1 + 1 = - 2 + 1$ |
$4x = - 1$ | |
Step 4: Divide both sides by 4: |
$\frac{{4x}}{4} = \frac{{ - 1}}{4}$ |
Solution is: | $x = - \frac{1}{4}$ |
Level 1
Level 2
Example 2
Solve $2 (x - 4) + 4 (2 - x) = 5x - 4 (x + 1)$
Solution 2
Step 1: Simplify both sides: |
$2 (x - 4) + 4 (2 - x) = 5x - 4 (x + 1)$ |
$2x - 8 + 8 - 4x = 5x - 4x - 4$ | |
$- 2x = x - 4$ | |
Step 2: Subtract x from both sides. |
$- 2x - x = x - 4 - x$ |
$- 3x = - 4$ | |
Step 3: Divide both sides by -3: |
$\frac{{ - 3x}}{{ - 3}} = \frac{{ - 4}}{{ - 3}}$ |
Solution is: | $x = \frac{4}{3}$ |
Level 1
Level 2
Example 3
Solve $x + \frac{1}{2} = \frac{x}{2} - \frac{2}{3}$
Solution 3
Step 1: Multiply both sides by the LCD. Lowest common multiple of 2 and 3 is 6. So, we multiply both sides by 6. |
$6 \cdot \left( {x + \frac{1}{2}} \right) = 6 \cdot \left( {\frac{x}{2} - \frac{2}{3}} \right)$ |
Step 2: Remove brackets: |
$6 \cdot x + 6 \cdot \frac{1}{2} = 6 \cdot \frac{x}{2} - 6 \cdot \frac{2}{3}$ |
Step3: This problem is similar to the previous |
$6x + 3 = 3x - 4$ |
$6x + 3 - 3x = 3x - 4 - 3x$ | |
$3x + 3 = - 4$ | |
$3x + 3 - 3 = -4 - 3$ | |
$3x = - 7$ | |
$\frac{{3x}}{3} = \frac{{ - 7}}{3}$ | |
Solution is: |
$x = - \frac{7}{3}$ |
Level 1
Level 2
Example 4
$\frac{{2x}}{{x + 2}} = \frac{4}{{x - 10}} + 2$
Solution 4
In this case the LCD is (x + 2)(x - 10). Here is the complete solution to this problem.
$$\frac{{2x}}{{x + 2}} = \frac{4}{{x - 10}} + 2$$ $$\cancel{{(x + 2)}}(x - 10)\frac{{2x}}{{\cancel{{x + 2}}}} = (x + 2)\cancel{{(x - 10)}}\frac{4}{{\cancel{{x - 10}}}} + (x + 2)(x - 10) \cdot 2$$ $$(x - 10) \cdot 2x = (x + 2) \cdot 4 + 2({x^2} + x - 10x - 20)$$ $$\cancel{{2{x^2}}} - 20x = 4x + 8 + \cancel{{2{x^2}}} + 2x - 20x - 40$$ $$ - 20x = 4x + 8 + 2x - 20x - 40$$ $$ - 20x = - 14x - 32$$ $$ - 20x + 14x = - 14x - 32 + 14x$$ $$ - 6x = - 32$$ $$x = \frac{{ - 32}}{{ - 6}}$$ $$x = \frac{{16}}{3}$$
Example 5
$\frac{1}{{x + 3}} = \frac{{ - 2x}}{{{x^2} + 5x + 6}}$
Solution 4
The first step is to factor the denominators
$\frac{1}{{x + 3}} = \frac{{ - 2x}}{{(x + 3)(x + 2)}}$
The LCD is (x + 3)(x + 2). The solution is:
$$\frac{1}{{x + 3}} = \frac{{ - 2x}}{{(x + 3)(x + 2)}}$$ $$(x + 3)(x + 2)\frac{1}{{x + 3}} = (x + 3)(x + 2)\frac{{ - 2x}}{{(x + 3)(x + 2)}}$$ $$x + 2 = - 2x$$ $$x + 2x = - 2$$ $$3x = - 2$$ $$x = - \frac{2}{3}$$
Level 1
Level 2