Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
Solving Equations: (lesson 1 of 4)

Solving Linear Equations

Equations with no parentheses

Example 1

Solve 5x - 4 - 2x + 3 = -7 - 3x + 5 + 2x

Solution 1

Step 1: Combine the similar terms

5x42x+3=73x+5+2x5x - 4 - 2x + 3 = - 7 - 3x + 5 + 2x
3x1=x23x - 1 = - x - 2

Step 2: Add x to both sides.

3x1+x=x2+x3x - 1 + x = - x - 2 + x
4x1=24x - 1 = - 2

Step 3: Add 1 to both sides.

4x1+1=2+14x - 1 + 1 = - 2 + 1
4x=14x = - 1

Step 4: Divide both sides by 4:

4x4=14\frac{{4x}}{4} = \frac{{ - 1}}{4}
Solution is: x=14x = - \frac{1}{4}

Exercise 1: Solve equations

Level 1

2x34x=6+x \color{blue}{2x - 3 - 4x = 6 + x} x=1 x = - 1
x=4 x = - 4
x=7 x = 7
x=3 x = - 3

Level 2

12x13+5x=3x+112x \color{blue}{- 12x - 13 + 5x = - 3x + 11 - 2x} x=3 x = 3
x=2 x = 2
x=1 x = 1
x=0 x = 0

Equations with parentheses

Example 2

Solve 2(x4)+4(2x)=5x4(x+1)2 (x - 4) + 4 (2 - x) = 5x - 4 (x + 1)

Solution 2

Step 1: Simplify both sides:

2(x4)+4(2x)=5x4(x+1)2 (x - 4) + 4 (2 - x) = 5x - 4 (x + 1)
2x8+84x=5x4x42x - 8 + 8 - 4x = 5x - 4x - 4
2x=x4- 2x = x - 4

Step 2: Subtract x from both sides.

2xx=x4x- 2x - x = x - 4 - x
3x=4- 3x = - 4

Step 3: Divide both sides by -3:

3x3=43\frac{{ - 3x}}{{ - 3}} = \frac{{ - 4}}{{ - 3}}
Solution is: x=43x = \frac{4}{3}

Exercise 2: Solve equations

Level 1

2(3x)=33(x+1) \color{blue}{2 ( 3 - x ) = 3 - 3 ( x + 1 )} x=4 x = - 4
x=2 x = - 2
x=6 x = - 6
x=8 x = - 8

Level 2

22(3x)=64(x2) \color{blue}{- 2 - 2 ( - 3 - x ) = - 6 - 4 ( - x - 2 )} x=2 x = 2
x=3 x = 3
x=1 x = 1
x=0 x = 0

Equations containing fractions

Example 3

Solve x+12=x223x + \frac{1}{2} = \frac{x}{2} - \frac{2}{3}

Solution 3

Step 1: Multiply both sides by the LCD. Lowest common multiple of 2 and 3 is 6. So, we multiply both sides by 6.

6(x+12)=6(x223)6 \cdot \left( {x + \frac{1}{2}} \right) = 6 \cdot \left( {\frac{x}{2} - \frac{2}{3}} \right)

Step 2: Remove brackets:

6x+612=6x26236 \cdot x + 6 \cdot \frac{1}{2} = 6 \cdot \frac{x}{2} - 6 \cdot \frac{2}{3}

Step3: This problem is similar to the previous

6x+3=3x46x + 3 = 3x - 4
6x+33x=3x43x6x + 3 - 3x = 3x - 4 - 3x
3x+3=43x + 3 = - 4
3x+33=433x + 3 - 3 = -4 - 3
3x=73x = - 7
3x3=73\frac{{3x}}{3} = \frac{{ - 7}}{3}

Solution is:

x=73x = - \frac{7}{3}

Exercise 3: Solve equations

Level 1

x3+2=x21 \color{blue}{\frac{x}{3} + 2 = \frac{x}{2} - 1} x=18 x = 18
x=16 x = 16
x=14 x = 14
x=12 x = 12

Level 2

2(x4+3)=x45+x3 \color{blue}{2\left( {\frac{x}{4} + 3} \right) = \frac{x}{4} - 5 + \frac{x}{3}} x=130 x = 130
x=128 x = 128
x=134 x = 134
x=132 x = 132

More Complicated Example

Example 4

2xx+2=4x10+2\frac{{2x}}{{x + 2}} = \frac{4}{{x - 10}} + 2

Solution 4

In this case the LCD is (x + 2)(x - 10). Here is the complete solution to this problem.

2xx+2=4x10+2\frac{{2x}}{{x + 2}} = \frac{4}{{x - 10}} + 2 (x+2)(x10)2xx+2=(x+2)(x10)4x10+(x+2)(x10)2\cancel{{(x + 2)}}(x - 10)\frac{{2x}}{{\cancel{{x + 2}}}} = (x + 2)\cancel{{(x - 10)}}\frac{4}{{\cancel{{x - 10}}}} + (x + 2)(x - 10) \cdot 2 (x10)2x=(x+2)4+2(x2+x10x20)(x - 10) \cdot 2x = (x + 2) \cdot 4 + 2({x^2} + x - 10x - 20) 2x220x=4x+8+2x2+2x20x40\cancel{{2{x^2}}} - 20x = 4x + 8 + \cancel{{2{x^2}}} + 2x - 20x - 40 20x=4x+8+2x20x40 - 20x = 4x + 8 + 2x - 20x - 40 20x=14x32 - 20x = - 14x - 32 20x+14x=14x32+14x - 20x + 14x = - 14x - 32 + 14x 6x=32 - 6x = - 32 x=326x = \frac{{ - 32}}{{ - 6}} x=163x = \frac{{16}}{3}

Much more Complicated Example

Example 5

1x+3=2xx2+5x+6\frac{1}{{x + 3}} = \frac{{ - 2x}}{{{x^2} + 5x + 6}}

Solution 4

The first step is to factor the denominators

1x+3=2x(x+3)(x+2)\frac{1}{{x + 3}} = \frac{{ - 2x}}{{(x + 3)(x + 2)}}

The LCD is (x + 3)(x + 2). The solution is:

1x+3=2x(x+3)(x+2)\frac{1}{{x + 3}} = \frac{{ - 2x}}{{(x + 3)(x + 2)}} (x+3)(x+2)1x+3=(x+3)(x+2)2x(x+3)(x+2)(x + 3)(x + 2)\frac{1}{{x + 3}} = (x + 3)(x + 2)\frac{{ - 2x}}{{(x + 3)(x + 2)}} x+2=2xx + 2 = - 2x x+2x=2x + 2x = - 2 3x=23x = - 2 x=23x = - \frac{2}{3}

Exercise 4: Solve equations

Level 1

4x+2=3xx13 \color{blue}{\frac{4}{{x + 2}} = \frac{{3x}}{{x - 1}} - 3} x=2 x = - 2
x=3 x = - 3
x=4 x = - 4
x=5 x = - 5

Level 2

3x+1=9x2+3x+2 \color{blue}{\frac{3}{{x + 1}} = \frac{9}{{{x^2} + 3x + 2}}} x=3 x = 3
x=2 x = 2
x=1 x = 1
x=0 x = 0