Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Solving Quadratic Equation
Solving Equations: (lesson 4 of 4)

Solving Equations with Radicals

A "radical" equation is an equation in which there is a variable inside the radical sign

Four steps to solve equations with radicals

Step 1: Isolate the radicals to left side of the equal sign.

Step 2: Square each side of the equation

Step 3: Solve the resulting equation

Step 4: Check all solutions

Equations with one radical

Example 1: Solve 2x+3x=0\sqrt {2x + 3} - x = 0

Solution

Step 1: Isolate the radicals to left side of the equal sign.

2x+3x=0\sqrt {2x + 3} - x = 0 2x+3=x\sqrt {2x + 3} = x

Step 2: Square each side of the equation

(2x+3)2=(x)2{\left( {\sqrt {2x + 3} } \right)^2} = {(x)^2} 2x+2=x22x + 2 = {x^2} x22x3=0{x^2} - 2x - 3 = 0

Step 3: Solve the resulting equation

x22x3=0{x^2} - 2x - 3 = 0 a=1,b=2,c=3a = 1, b = - 2, c = - 3 x1,2=b±b24ac2a{x_{1,2}} = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} x1,2=(2)±(2)241(3)21{x_{1,2}} = \frac{{ - ( - 2) \pm \sqrt {{{( - 2)}^2} - 4 \cdot 1 \cdot ( - 3)} }}{{2 \cdot 1}} x1,2=2±4+122{x_{1,2}} = \frac{{2 \pm \sqrt {4 + 12} }}{2} x1,2=2±42{x_{1,2}} = \frac{{2 \pm 4}}{2} x1=2+42,x2=242{x_1} = \frac{{2 + 4}}{2},{x_2} = \frac{{2 - 4}}{2} x1=3,x2=1{x_1} = 3,{x_2} = - 1

Step 4: Check all solutions

Let's check to see if x1 = 3 is solution:

2x+3x=0\sqrt {2x + 3} - x = 0 23+33=0\sqrt {2 \cdot 3 + 3} - 3 = 0 93=0\sqrt 9 - 3 = 0 33=03 - 3 = 0 0=0,OK0 = 0, OK

Let's check to see if x2 = -1 is solution:

2x+3x=0\sqrt {2x + 3} - x = 0 2(1)+3(1)=0\sqrt {2 \cdot ( - 1) + 3} - ( - 1) = 0 2+3+1=0\sqrt { - 2 + 3} + 1 = 0 1+1=0\sqrt 1 + 1 = 0 2=0,NOTOK2 = 0,NOTOK

So, the original equation had a single solution x = 3 .

Exercise 1: Solve equations

Level 1

2x1=x \color{blue}{\sqrt {2x - 1} = x} x=1 x = 1
x=1 x = -1
x=2 x = 2
x=2 x = -2

Level 2

x+6=x \color{blue}{\sqrt {x + 6} = x} x=3,x=2 x = 3, x = - 2
x=3,x=2 x = - 3, x = 2
x=3 x = - 3
x=2 x = 2

Example 2: Solve 4x+3+2x1=0\sqrt {4x + 3} + 2x - 1 = 0

Solution

4x+3+2x1=0\sqrt {4x + 3} + 2x - 1 = 0 (4x3)2=(12x)2{(\sqrt {4x - 3} )^2} = {(1 - 2x)^2} 4x3=14x+4x24x - 3 = 1 - 4x + 4{x^2} 4x31+4x4x2=04x - 3 - 1 + 4x - 4{x^2} = 0 4x2+8x4=0/:(4) - 4{x^2} + 8x - 4 = 0/:( - 4) x22x+1=0{x^2} - 2x + 1 = 0 (x1)2=0{(x - 1)^2} = 0 x=1x = 1

Let's check it to see if x = 1 is a solution to the original equation.

4x3+2x1=0\sqrt {4x - 3} + 2x - 1 = 0 413+211=0\sqrt {4 \cdot 1 - 3} + 2 \cdot 1 - 1 = 0 1+21=0\sqrt 1 + 2 - 1 = 0 2=02 = 0

So, the original equation had no solutions.

Exercise 2: Solve equations

Level 1

3x+1x1=0 \color{blue}{\sqrt {3x + 1} - x - 1 = 0} x1=0,x2=1 {x_1} = 0, {x_2} = - 1
x=1 x = - 1
x1=0,x2=1 {x_1} = 0, {x_2} = 1
x=0 x = 0

Level 2

2x+320x+9=0 \color{blue}{2x + 3 - \sqrt {20x + 9} = 0} x1=0,x2=2 {x_1} = 0, {x_2} = - 2
x1=0,x2=2 {x_1} = 0, {x_2} = 2
x=0 x = 0
x=2 x = - 2

Equations with two radicals

Example 3: Solve 3x+42x+1=1\sqrt {3x + 4} - \sqrt {2x + 1} = 1

Solution

First thing to do is get one of the square roots by itself.

3x+42x+1=1\sqrt {3x + 4} - \sqrt {2x + 1} = 1 3x+4=1+2x+1\sqrt {3x + 4} = 1 + \sqrt {2x + 1} (3x+4)2=(1+2x+1)2{(\sqrt {3x + 4} )^2} = {(1 + \sqrt {2x + 1} )^2} 3x+4=12+212x+1+(2x+1)23x + 4 = {1^2} + 2 \cdot 1 \cdot \sqrt {2x + 1} + {(\sqrt {2x + 1} )^2} 3x+4=1+22x+1+2x+13x + 4 = 1 + 2\sqrt {2x + 1} + 2x + 1

We have managed to eliminate one of square roots!! We will continue to work this problem as we did in the previous examples.

3x+4=1+22x+1+2x+13x + 4 = 1 + 2\sqrt {2x + 1} + 2x + 1 3x+4=2+2x+22x+13x + 4 = 2 + 2x + 2\sqrt {2x + 1} 3x+422x=22x+13x + 4 - 2 - 2x = 2\sqrt {2x + 1} (x+2)2=(22x+1)2{(x + 2)^2} = {(2\sqrt {2x + 1} )^2} x2+22x+22=22(2x+1){x^2} + 2 \cdot 2 \cdot x + {2^2} = {2^2}(2x + 1) x2+4x+4=8x+4{x^2} + 4x + 4 = 8x + 4 x24x=0{x^2} - 4x = 0 x(x4)=0x(x - 4) = 0 x1=0{x_1} = 0 x2=4{x_2} = 4

Let's check both possible solutions. We will start with x = 0.

3x+42x+1=1\sqrt {3x + 4} - \sqrt {2x + 1} = 1 30+420+1=1\sqrt {3 \cdot 0 + 4} - \sqrt {2 \cdot 0 + 1} = 1 41=1\sqrt 4 - \sqrt 1 = 1 1=1OK1 = 1 \Rightarrow OK

Now let's check x = 4.

3x+42x+1=1\sqrt {3x + 4} - \sqrt {2x + 1} = 1 34+424+1=1\sqrt {3 \cdot 4 + 4} - \sqrt {2 \cdot 4 + 1} = 1 169=1\sqrt {16} - \sqrt 9 = 1 1=1OK1 = 1 \Rightarrow OK

Exercise 3: Solve equations

Level 1

x+1x=1 \color{blue}{\sqrt {x + 1} - \sqrt x = 1} x=0,x=1 x = 0, x = 1
x=0 x = 0
x=1 x = 1
x=1 x = - 1

Level 2

x+1+2x+3=5 \color{blue}{\sqrt {x + 1} + \sqrt {2x + 3} = 5} x=143 x = 143
x=143 x = - 143
x=3 x = - 3
x=3 x = 3