Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Division of Polynomials
Polynomials: (lesson 3 of 3)

Zeros of Polynomials

Number of Zeros Theorem

A polynomial of degree n has at most n distinct zeros.

Conjugate Zeros Theorem

Let p(x) be a polynomial function with real coefficients. If a + ib is an imaginary zero of p(x), the conjugate a-bi is also a zero of p(x).

The Factor Theorem

For a polynomial f(x) and a constant c,

a. If f(c) = 0, then x - c is a factor of f(x).

b. If x - c is a factor of f(x), then f(c) = 0.

The Factor Theorem tells us that if we find a value of c such that f(c) = 0, then x - c is a factor of f(x). And, if x - c is a factor of f(x), then f(c) = 0.

Rational Root Test

If a polynomial function has integer coefficients, then every rational zero will have the form p/q where p is a factor of the constant and q is a factor of the leading coefficient.

Example 1

Use the Rational Root Test to list all the possible rational zeros for f(x)=4x32x2+x+10f(x) = 4{x^3} - 2{x^2} + x + 10.

Solution:

Step 1: Find factors of the leading coefficient

1, -1, 2, -2, 4, -4

Step 2: Find factors of the constant

1, -1, 2, -2, 5, -5, 10, -10

Step 3: Find all the POSSIBLE rational zeros or roots.

Writing the possible factors as pq\frac{p}{q} we get:

11\frac{1}{1}, 11\frac{-1}{1}, 21\frac{2}{1}, 21\frac{-2}{1}, 41\frac{4}{1}, 41\frac{-4}{1}, 12\frac{1}{2}, 12\frac{-1}{2}, 22\frac{2}{2}, 22\frac{-2}{2}, 42\frac{4}{2}, 42\frac{-4}{2}

15\frac{1}{5}, 15\frac{-1}{5}, 25\frac{2}{5}, 25\frac{-2}{5}, 45\frac{4}{5}, 45\frac{-4}{5}, 110\frac{1}{10}, 110\frac{-1}{10}, 210\frac{2}{10}, 210\frac{-2}{10}, 410\frac{4}{10}, 410\frac{-4}{10}

Here is a final list of all the possible rational zeros, each one written once and reduced:

11, 1-1, 22, 2-2, 44, 4-4, 12\frac{1}{2}, 12\frac{-1}{2}, 15\frac{1}{5}, 15\frac{-1}{5}, 45\frac{4}{5}, 45\frac{-4}{5}, 110\frac{1}{10}, 110\frac{-1}{10}

Example 2

Factor f(x) = f(x)=6x3+17x263x+10f(x) = 6{x^3} + 17{x^2} - 63x + 10into linear factors

Solution

Step 1: Find factors of the leading coefficient

1, -1, 2, -2, 3, -3, 6, -6

Step 2: Find factor of the constant

1, -1, 2, -2, 5, -5, 10, -10

Step 3: Find all the possible rational zeros or roots.

Writing the possible factors as pq\frac{p}{q} we get:

11\frac{1}{1}, 11\frac{-1}{1}, 21\frac{2}{1}, 21\frac{-2}{1}, 31\frac{3}{1}, 31\frac{-3}{1}, 61\frac{6}{1}, 61\frac{-6}{1}, 12\frac{1}{2}, 12\frac{-1}{2}, 22\frac{2}{2}, 22\frac{-2}{2}, 32\frac{3}{2}, 32\frac{-3}{2}, 62\frac{6}{2}, 62\frac{-6}{2}

15\frac{1}{5}, 15\frac{-1}{5}, 25\frac{2}{5}, 25\frac{-2}{5}, 35\frac{3}{5}, 35\frac{-3}{5}, 65\frac{6}{5}, 65\frac{-6}{5}, 110\frac{1}{10}, 110\frac{-1}{10}, 210\frac{2}{10}, 210\frac{-2}{10}, 310\frac{3}{10}, 310\frac{-3}{10}, 610\frac{6}{10}, 610\frac{-6}{10}

We check that -5 is the zero of f(x)f(x).

Now we use the Factor Theorem

6x3+17x263x+10x+5=6x213x+2\frac{{6{x^3} + 17{x^2} - 63x + 10}}{{x + 5}} = 6{x^2} - 13x + 2

Now we have to solve 6x213x+2=0.6x^2 - 13x + 2 = 0.

x1,2=b±b24ac2a=13±(13)246226{x_{1,2}} = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} = \frac{{13 \pm \sqrt {{{( - 13)}^2} - 4 \cdot 6 \cdot 2} }}{{2 \cdot 6}}

x1=2{x_1} = 2, x2=16{x_2} = \frac{1}{6}

The roots are: x1=2{x_1} = 2, x2=16{x_2} = \frac{1}{6}, x3=5{x_3} = - 5