Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
Roots and Radicals: (lesson 1 of 3)

Simplifying Radical Expressions

To begin the process of simplifying radical expression, we must introduce the product and quotient rule for radicals

Product and quotient rule for radicals

Product Rule for Radicals: If an \sqrt[n]{a} and bn \sqrt[n]{b} are real numbers and nn is a natural number, then anbn=abn \large{\color{blue}{\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}}}

That is, the product of two radicals is the radical of the product.

Example 1 - using product rule

a)65=65=30 a) \sqrt{\color{red}{6}} \cdot \sqrt{\color{blue}{5}} = \sqrt{\color{red}{6} \cdot \color{blue}{5}} = \sqrt{30} b)52ab=52ab=10ab b) \sqrt{\color{red}{5}} \cdot \sqrt{\color{blue}{2ab}} = \sqrt{\color{red}{5} \cdot \color{blue}{2ab}} = \sqrt{10ab}
c)4a47a2b4=4a7a2b4=28a3b4 c) \sqrt[4]{\color{red}{4a}} \cdot \sqrt[4]{\color{blue}{7a^2b}} = \sqrt[4]{\color{red}{4a} \cdot \color{blue}{7a^2b}} = \sqrt[4]{28a^3b}

Quotient Rule for Radicals: If an \sqrt[n]{a} and bn \sqrt[n]{b} are real numbers, b0 b \ne 0 and n n is a natural number, then anbn=abn \color{blue}{\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[\large{n}]{\frac{a}{b}}}

That is, the radical of a quotient is the quotient of the radicals.

Example 2 - using quotient rule

a)536=536=56 a) \sqrt{\frac{\color{red}{5}}{\color{blue}{36}}} = \frac{ \sqrt{\color{red}{5}} } { \sqrt{\color{blue}{36}} } = \frac{\sqrt{5}}{6} b)a273=a3273=a33 b) \sqrt[3]{\frac{\color{red}{a}}{\color{blue}{27}}} = \frac{ \sqrt[3]{\color{red}{a}} }{ \sqrt[3]{\color{blue}{27}} } = \frac{\sqrt[3]{a}}{3}
c)81644=814644=32 c) \sqrt[4]{\frac{\color{red}{81}}{\color{blue}{64}}} = \frac{\sqrt[4]{\color{red}{81}} }{\sqrt[4]{\color{blue}{64}} } = \frac{3}{2}

Exercise 1: Simplify radical expression

Level 1

51527 \color{blue}{\sqrt5 \cdot \sqrt{15} \cdot{\sqrt{27}}} 527 5\sqrt{27}
30 30
45 45
302 30\sqrt2

Level 2

3264 \color{blue}{\sqrt{\frac{32}{64}}} 22 \frac{\sqrt2}{2}
22 2\sqrt2
22 \frac{2}{\sqrt2}
2 2

Simplifying Roots of Numbers

Example 3: Simplify 18 \sqrt{18}

Solution:

Step 1: We need to find the largest perfect square that divides into 18. Such number is 9.

Step 2: Write 18 as the product of 2 and 9. ( 18 = 9 * 2 )

Step 3: Use the product rule: 18=92=92=32 \sqrt{18} = \sqrt{\color{red}{9} \cdot \color{blue}{2}} = \sqrt{\color{red}{9}} \cdot \sqrt{\color{blue}{2}} = 3\sqrt{2}

Example 4: Simplify 108 \sqrt{108}

Solution:

Step 1: Again, we need to find the largest perfect square that divides into 108. Such number is 36.

Step 2: Write 108 as the product of 36 and 3. ( 108 = 36 * 3 )

Step 3: Use the product rule: 108=363=363=63 \sqrt{108} = \sqrt{\color{red}{36} \cdot \color{blue}{3}} = \sqrt{\color{red}{36}} \cdot \sqrt{\color{blue}{3}} = 6\sqrt{3}

Example 5: Simplify 15\sqrt{15}

Solution:

No perfect square divides into 15, so 15\sqrt{15} cannot be simplified

Example 6: Simplify 243 \sqrt[3]{24}

Solution:

Step 1: Now, we need to find the largest perfect cube that divides into 24. Such number is 8.

Step 2:Write 24 as the product of 8 and 3. ( 24 = 8 * 3 )

Step 3:Use the product rule: 243=833=8333=233 \sqrt[3]{24} = \sqrt[3]{\color{red}{8} \cdot \color{blue}{3}} = \sqrt[3]{\color{red}{8}} \cdot \sqrt[3]{\color{blue}{3}} = 2\sqrt[3]{3}

Exercise 2: Simplify expression

Level 1

128 \color{blue}{\sqrt{128}} 42 4\sqrt2
2 \sqrt2
82 8\sqrt2
6 \sqrt6

Level 2

1283 \color{blue}{\sqrt[\large{3}]{128}} 223 2\sqrt[\large{3}]{2}
623 6\sqrt[\large{3}]{2}
423 4\sqrt[\large{3}]{2}
1223 12\sqrt[\large{3}]{2}

Simplifying Radicals Involving Variables

Examples 7: In this examples we assume that all variables represent positive real numbers.

a)4a3=4a2a=4a2a=2aab)9b7=9(b3)2b=9(b3)2b=3b3b \begin{aligned} a) & \sqrt{4 \cdot a^3} = \sqrt{\color{red}{4} \cdot \color{blue}{a^2} \cdot a} = \sqrt{\color{red}{4}} \cdot \sqrt{\color{blue}{a^2}} \cdot \sqrt{a} = 2a\sqrt{a} \\ b) & \sqrt{9 \cdot b^7} = \sqrt{\color{red}{9} \cdot \color{blue}{(b^3)^2} \cdot b} = \sqrt{\color{red}{9}} \cdot \sqrt{\color{blue}{(b^3)^2}} \cdot \sqrt{b} = 3b^3\sqrt{b} \end{aligned}

Exercise 3: Simplify expression

Level 1

16a5 \color{blue}{\sqrt{16a^5}} 4aa 4a\sqrt a
8aa 8a\sqrt a
8a2 8a^2
4a2a 4a^2 \sqrt a

Level 2

8x3y3 \color{blue}{\sqrt{8x^3y^3}} x2xy x\sqrt{2xy}
2xy2xy 2xy\sqrt{2xy}
22x2y 2\sqrt 2\, x^2 y
22xy2 2\sqrt 2\, x y^2