To begin the process of simplifying radical expression, we must introduce the product and quotient rule for radicals
Product Rule for Radicals: If $ \sqrt[n]{a} $ and $ \sqrt[n]{b} $ are real numbers and $n$ is a natural number, then $$ \large{\color{blue}{\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}}} $$
That is, the product of two radicals is the radical of the product.
Example 1 - using product rule
$$ a) \sqrt{\color{red}{6}} \cdot \sqrt{\color{blue}{5}} = \sqrt{\color{red}{6} \cdot \color{blue}{5}} = \sqrt{30} $$ | $$ b) \sqrt{\color{red}{5}} \cdot \sqrt{\color{blue}{2ab}} = \sqrt{\color{red}{5} \cdot \color{blue}{2ab}} = \sqrt{10ab} $$ |
$$ c) \sqrt[4]{\color{red}{4a}} \cdot \sqrt[4]{\color{blue}{7a^2b}} = \sqrt[4]{\color{red}{4a} \cdot \color{blue}{7a^2b}} = \sqrt[4]{28a^3b} $$ |
Quotient Rule for Radicals: If $ \sqrt[n]{a} $ and $ \sqrt[n]{b} $ are real numbers, $ b \ne 0 $ and $ n $ is a natural number, then $$ \color{blue}{\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[\large{n}]{\frac{a}{b}}} $$
That is, the radical of a quotient is the quotient of the radicals.
Example 2 - using quotient rule
$$ a) \sqrt{\frac{\color{red}{5}}{\color{blue}{36}}} = \frac{ \sqrt{\color{red}{5}} } { \sqrt{\color{blue}{36}} } = \frac{\sqrt{5}}{6} $$ | $$ b) \sqrt[3]{\frac{\color{red}{a}}{\color{blue}{27}}} = \frac{ \sqrt[3]{\color{red}{a}} }{ \sqrt[3]{\color{blue}{27}} } = \frac{\sqrt[3]{a}}{3} $$ |
$$ c) \sqrt[4]{\frac{\color{red}{81}}{\color{blue}{64}}} = \frac{\sqrt[4]{\color{red}{81}} }{\sqrt[4]{\color{blue}{64}} } = \frac{3}{2} $$ |
Level 1
Level 2
Example 3: Simplify $ \sqrt{18} $
Solution:
Step 1: We need to find the largest perfect square that divides into 18. Such number is 9.
Step 2: Write 18 as the product of 2 and 9. ( 18 = 9 * 2 )
Step 3: Use the product rule: $ \sqrt{18} = \sqrt{\color{red}{9} \cdot \color{blue}{2}} = \sqrt{\color{red}{9}} \cdot \sqrt{\color{blue}{2}} = 3\sqrt{2} $
Example 4: Simplify $ \sqrt{108} $
Solution:
Step 1: Again, we need to find the largest perfect square that divides into 108. Such number is 36.
Step 2: Write 108 as the product of 36 and 3. ( 108 = 36 * 3 )
Step 3: Use the product rule: $ \sqrt{108} = \sqrt{\color{red}{36} \cdot \color{blue}{3}} = \sqrt{\color{red}{36}} \cdot \sqrt{\color{blue}{3}} = 6\sqrt{3} $
Example 5: Simplify $\sqrt{15}$
Solution:
No perfect square divides into 15, so $\sqrt{15} $ cannot be simplified
Example 6: Simplify $ \sqrt[3]{24} $
Solution:
Step 1: Now, we need to find the largest perfect cube that divides into 24. Such number is 8.
Step 2:Write 24 as the product of 8 and 3. ( 24 = 8 * 3 )
Step 3:Use the product rule: $ \sqrt[3]{24} = \sqrt[3]{\color{red}{8} \cdot \color{blue}{3}} = \sqrt[3]{\color{red}{8}} \cdot \sqrt[3]{\color{blue}{3}} = 2\sqrt[3]{3} $
Level 1
Level 2
Examples 7: In this examples we assume that all variables represent positive real numbers.
$$ \begin{aligned} a) & \sqrt{4 \cdot a^3} = \sqrt{\color{red}{4} \cdot \color{blue}{a^2} \cdot a} = \sqrt{\color{red}{4}} \cdot \sqrt{\color{blue}{a^2}} \cdot \sqrt{a} = 2a\sqrt{a} \\ b) & \sqrt{9 \cdot b^7} = \sqrt{\color{red}{9} \cdot \color{blue}{(b^3)^2} \cdot b} = \sqrt{\color{red}{9}} \cdot \sqrt{\color{blue}{(b^3)^2}} \cdot \sqrt{b} = 3b^3\sqrt{b} \end{aligned} $$Level 1
Level 2