Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Area Between Two Curves
Applications Of The Definite Integrals: (lesson 2 of 3)

Volume

Definition 1

Let ff be continuous and nonnegative on [a,b][a, b]. Then, the volume of the solid generated by revolving the area below the graph of ff by x-axis between x=ax = a and x=b  (a<b)x = b \ \ (a < b) is defined by

V=abπ[f(x)]2dx V = \int\limits_a^b {\pi {{\left[ {f(x)} \right]}^2}dx}

Volume

Example 1:

Find the volume of the solid generated by revolving the region bounded by the graph of f(x)=sinxf(x) = \sqrt{\sin x} and the axis (0xπ)(0 \le x \le \pi) by the x-axis.

Solution:

f(x)=sinxf(x) = \sqrt{\sin x} and the x-axis intersect at (0,0)(0, 0) and (π,0)(\pi, 0), so since

f(x)=0sinx=0x=0,π,2π,... f(x) = 0 \leftrightarrow \sqrt{\sin x} = 0 \leftrightarrow x = 0, \pi, 2 \pi, . . .

Thus,

V=abπ[f(x)]2dx=π0z(sinx)2dx=π0zsinxdx==[πcosx]0z=πcos(π)+πcos(0)==2π \begin{aligned} V &= \int\limits_a^b {\pi {{[f(x)]}^2}dx} = \pi \int\limits_0^z {{{(\sqrt {\sin x} )}^2}dx} = \pi \int\limits_0^z {\sin xdx} = \\ &= [ - \pi \cos x]_0^z = - \pi \cos (\pi ) + \pi \cos (0) = \\ &= 2 \pi \end{aligned}

Definition 2:

If the area is revolved about the y-axis, then the volume of the generated solid is defined by

V=ab2πxf(x)dx V = \int\limits_a^b {2\pi xf(x)dx}

volume definition

Example 2:

Find the volume of the solid generated by revolving the area below the graph of f(x)=xx3f(x) = x - x^3 and the x-axis about the y-axis.

Solution:

f(x)=xx3f(x) = x - x^3 and the x-axis intersect at (0,0)(0, 0) and (2,0)(2, 0) since

f(x)=0xx3=0x=0,1f(x) = 0 \leftrightarrow x - x^3 = 0 \leftrightarrow x = 0,1.

Then

V=ab2πxf(x)dx=2π01x(xx3)dx=2π01(x4+x2)dx==2π[x55+x35]01==4π15 \begin{aligned} V &= \int\limits_a^b {2\pi xf(x)dx = 2\pi \int\limits_0^1 {x(x - {x^3})dx = } } 2\pi \int\limits_0^1 {( - {x^4} + {x^2})dx = } \\ &= 2\pi \left[ {\frac{ - x^5}{5} + \frac{x^3}{5}} \right]_0^1 = \\ &= \frac{4 \pi}{15} \end{aligned}

Volume by rotating the area between two curves

Let f(x)g(x)f(x) \ge g(x). The volume generated by rotating the region bounded by the curves and lines y=f(x)y = f(x), y=g(x)y = g(x), x=ax = a and x=bx = b around the x-axis is defined by

V=abπ{[f(x)]2[g(x)]2}dx V = \int\limits_a^b {\pi \left\{ {{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}} \right\}} dx

volume formula

Example 3:

Find the volume of the solid generated by revolving the area bounded by the graphs of f(x)=x2f(x) = x^2 and g(x)=xg(x) = \sqrt{x} about the x-axis.

Solution:

The two lines intersect at the points (0,0(0, 0 and (1,1)(1,1) since

f(x)=g(x)x2=xx4x2=0x=1,0,1. f(x) = g(x) \leftrightarrow x^2 = \sqrt{x} \leftrightarrow x^4 - x^2 = 0 \leftrightarrow x = -1, 0, 1.

Thus,

V=abπ{[f(x)]2[g(x)]2}dx=π01[(x)2(x2)2]dx==π01(xx4)dx=π[x22x5]01==3π10 \begin{aligned} V &= \int\limits_a^b {\pi \left\{ {{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}} \right\}} dx = \pi \int\limits_0^1 {\left[ {{{(\sqrt x )}^2} - {{({x^2})}^2}} \right]dx} = \\ &= \pi \int\limits_0^1 {(x - {x^4})dx} = \pi \left[ {\frac{{{x^2}}}{2} - \frac{{{x^ \to }}}{5}} \right]_0^1 = \\ &= \frac{3\pi }{10} \end{aligned}