Applications Of The Definite Integrals: (lesson 2 of 3)
Volume
Definition 1
Let f f f be continuous and
nonnegative on [ a , b ] [a, b] [ a , b ] . Then, the volume of the solid generated by revolving the
area below the graph of f f f by x-axis
between x = a x = a x = a and x = b ( a < b ) x = b \ \ (a < b) x = b ( a < b ) is defined by
V = ∫ a b π [ f ( x ) ] 2 d x
V = \int\limits_a^b {\pi {{\left[ {f(x)} \right]}^2}dx}
V = a ∫ b π [ f ( x ) ] 2 d x
Example 1:
Find the volume of the solid generated by revolving the region bounded by the graph of
f ( x ) = sin x f(x) = \sqrt{\sin x} f ( x ) = sin x and the axis
( 0 ≤ x ≤ π ) (0 \le x \le \pi) ( 0 ≤ x ≤ π ) by the x-axis.
Solution:
f ( x ) = sin x f(x) = \sqrt{\sin x} f ( x ) = sin x and the x-axis intersect at ( 0 , 0 ) (0, 0) ( 0 , 0 ) and
( π , 0 ) (\pi, 0) ( π , 0 ) , so since
f ( x ) = 0 ↔ sin x = 0 ↔ x = 0 , π , 2 π , . . .
f(x) = 0 \leftrightarrow \sqrt{\sin x} = 0 \leftrightarrow x = 0, \pi, 2 \pi, . . .
f ( x ) = 0 ↔ sin x = 0 ↔ x = 0 , π , 2 π , ...
Thus,
V = ∫ a b π [ f ( x ) ] 2 d x = π ∫ 0 z ( sin x ) 2 d x = π ∫ 0 z sin x d x = = [ − π cos x ] 0 z = − π cos ( π ) + π cos ( 0 ) = = 2 π
\begin{aligned}
V &= \int\limits_a^b {\pi {{[f(x)]}^2}dx} = \pi \int\limits_0^z {{{(\sqrt {\sin x} )}^2}dx} = \pi \int\limits_0^z {\sin xdx} = \\
&= [ - \pi \cos x]_0^z = - \pi \cos (\pi ) + \pi \cos (0) = \\
&= 2 \pi
\end{aligned}
V = a ∫ b π [ f ( x )] 2 d x = π 0 ∫ z ( sin x ) 2 d x = π 0 ∫ z sin x d x = = [ − π cos x ] 0 z = − π cos ( π ) + π cos ( 0 ) = = 2 π
Definition 2:
If the area is revolved about the y-axis, then the volume of the generated solid
is defined by
V = ∫ a b 2 π x f ( x ) d x
V = \int\limits_a^b {2\pi xf(x)dx}
V = a ∫ b 2 π x f ( x ) d x
Example 2:
Find the volume of the solid generated by revolving the area below the
graph of f ( x ) = x − x 3 f(x) = x - x^3 f ( x ) = x − x 3 and the x-axis about the y-axis.
Solution:
f ( x ) = x − x 3 f(x) = x - x^3 f ( x ) = x − x 3 and the x-axis intersect at
( 0 , 0 ) (0, 0) ( 0 , 0 ) and
( 2 , 0 ) (2, 0) ( 2 , 0 ) since
f ( x ) = 0 ↔ x − x 3 = 0 ↔ x = 0 , 1 f(x) = 0 \leftrightarrow x - x^3 = 0 \leftrightarrow x = 0,1 f ( x ) = 0 ↔ x − x 3 = 0 ↔ x = 0 , 1 .
Then
V = ∫ a b 2 π x f ( x ) d x = 2 π ∫ 0 1 x ( x − x 3 ) d x = 2 π ∫ 0 1 ( − x 4 + x 2 ) d x = = 2 π [ − x 5 5 + x 3 5 ] 0 1 = = 4 π 15
\begin{aligned}
V &= \int\limits_a^b {2\pi xf(x)dx = 2\pi \int\limits_0^1 {x(x - {x^3})dx = } } 2\pi \int\limits_0^1 {( - {x^4} + {x^2})dx = } \\
&= 2\pi \left[ {\frac{ - x^5}{5} + \frac{x^3}{5}} \right]_0^1 = \\
&= \frac{4 \pi}{15}
\end{aligned}
V = a ∫ b 2 π x f ( x ) d x = 2 π 0 ∫ 1 x ( x − x 3 ) d x = 2 π 0 ∫ 1 ( − x 4 + x 2 ) d x = = 2 π [ 5 − x 5 + 5 x 3 ] 0 1 = = 15 4 π
Volume by rotating the area between two curves
Let
f ( x ) ≥ g ( x ) f(x) \ge g(x) f ( x ) ≥ g ( x ) . The volume
generated by rotating the region bounded by the curves and lines
y = f ( x ) y = f(x) y = f ( x ) , y = g ( x ) y = g(x) y = g ( x ) , x = a x = a x = a and
x = b x = b x = b around the x-axis is defined by
V = ∫ a b π { [ f ( x ) ] 2 − [ g ( x ) ] 2 } d x
V = \int\limits_a^b {\pi \left\{ {{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}} \right\}} dx
V = a ∫ b π { [ f ( x ) ] 2 − [ g ( x ) ] 2 } d x
Example 3:
Find the volume of the solid generated by revolving the area bounded by
the graphs of f ( x ) = x 2 f(x) = x^2 f ( x ) = x 2 and
g ( x ) = x g(x) = \sqrt{x} g ( x ) = x about the x-axis.
Solution:
The two lines intersect at the points ( 0 , 0 (0, 0 ( 0 , 0 and
( 1 , 1 ) (1,1) ( 1 , 1 ) since
f ( x ) = g ( x ) ↔ x 2 = x ↔ x 4 − x 2 = 0 ↔ x = − 1 , 0 , 1.
f(x) = g(x) \leftrightarrow x^2 = \sqrt{x} \leftrightarrow x^4 - x^2 = 0 \leftrightarrow x = -1, 0, 1.
f ( x ) = g ( x ) ↔ x 2 = x ↔ x 4 − x 2 = 0 ↔ x = − 1 , 0 , 1.
Thus,
V = ∫ a b π { [ f ( x ) ] 2 − [ g ( x ) ] 2 } d x = π ∫ 0 1 [ ( x ) 2 − ( x 2 ) 2 ] d x = = π ∫ 0 1 ( x − x 4 ) d x = π [ x 2 2 − x → 5 ] 0 1 = = 3 π 10
\begin{aligned}
V &= \int\limits_a^b {\pi \left\{ {{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}} \right\}} dx = \pi \int\limits_0^1 {\left[ {{{(\sqrt x )}^2} - {{({x^2})}^2}} \right]dx} = \\
&= \pi \int\limits_0^1 {(x - {x^4})dx} = \pi \left[ {\frac{{{x^2}}}{2} - \frac{{{x^ \to }}}{5}} \right]_0^1 = \\
&= \frac{3\pi }{10}
\end{aligned}
V = a ∫ b π { [ f ( x ) ] 2 − [ g ( x ) ] 2 } d x = π 0 ∫ 1 [ ( x ) 2 − ( x 2 ) 2 ] d x = = π 0 ∫ 1 ( x − x 4 ) d x = π [ 2 x 2 − 5 x → ] 0 1 = = 10 3 π