Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Integration by Parts
Integration Techniques: (lesson 3 of 4)

Integrals Involving Trigonometric Functions

Integrals of the form sinmxcosnxdx\int \sin^m x \cdot \cos^n x dx

Case 1: mm is an odd integer :

Step 1: Write sinmx\color{blue}{\sin^m x} as sinm1xsinx\color{blue}{\sin^{m-1} x \cdot \sin x}.

Step 2: Apply identity: sin2x=1cos2x\color{blue}{\sin^2 x = 1 - \cos^2 x}

Step 3: Use the substitution u=cosx\color{blue}{u = \cos x}.

Example 1: Evaluate the following integral

sin3xcos2xdx \int sin^3 x \cdot \cos^2 xdx

Solution:

In this example m=3m = 3 and n=2n = 2. Because mm is an odd integer we have:

Step 1:

sin5xcos2xdx=sin4xsinxcos2xdx \int \color{blue}{sin^5 x} \cdot cos^2 xdx = \int \color{blue}{sin^4 x \cdot \sin x} \cdot cos^2 xdx

Step 2: Apply: sin2x=1cos2x\color{blue}{\sin^2 x = 1 - cos^2 x}, then continue:

sin4xsinxcos2xdx=(sin2x)2sinxcos2xdx=(1cos2x)2cos2xsinxdx \int \sin^4 x \cdot \sin x \cdot \cos^2 xdx = \int (\color{blue}{\sin^2 x})^2 \cdot \sin x \cdot \cos^2 xdx = \int (\color{blue}{1 - \cos^2 x})^2 \cdot \cos^2 x \cdot \sin xdx

Step 3: Use the substitution u=cosx\color{blue}{u = \cos x}.

If u=cosx\color{blue}{u = \cos x}, then sinxdx\color{blue}{- \sin xdx}, so:

(1cos2x)2cos2xsinxdx======du=sinxdxu=cosx(1u2)2u2du==(12u2+u4)u2du=u22u4+u6du==u332u55+u77+C=13(cosx)325(cosx)5+17(cosx)7+C \begin{aligned} \int {{{(1 - {{\cos }^2}x)}^2}} &\cdot {\cos ^2}x \cdot \sin xdx \color{blue}{\mathop { = = = = = = }\limits_{du = - \sin xdx}^{u = \cos x}} \int {{{(1 - {u^2})}^2}} \cdot {u^2}du = \\ &= \int {(1 - 2{u^2} + {u^4}) \cdot {u^2}du} = \int {{u^2} - 2{u^4}} + {u^6}du = \\ &= \frac{{{u^3}}}{3} - 2\frac{{{u^5}}}{5} + \frac{{{u^7}}}{7} + C = \frac{1}{3}{(\cos x)^3} - \frac{2}{5}{(\cos x)^5} + \frac{1}{7}{(\cos x)^7} + C \end{aligned}

Try yourself

sin3xdx= \color{blue}{\int \sin^3 x dx = }
13cos3x+cosx+C \frac{1}{3} \cos^3 x + \cos x + C 13sin3x+cosx+C \frac{1}{3} \sin^3 x + \cos x + C 13cos3xcosx+C \frac{1}{3} \cos^3 x - \cos x + C 13sin3xsinx+C \frac{1}{3} \sin^3 x - \sin x + C

Case 2: nn is an odd integer :

Step 1: Write cosmx\color{blue}{\cos^m x} as cosm1xcosx\color{blue}{\cos^{m-1} x \cdot \cos x}.

Step 2: Apply identity: cos2x=1sin2x\color{blue}{\cos^2 x = 1 - \sin^2 x}

Step 3: Use the substitution u=sinx\color{blue}{u = \sin x}.

Example 2: Evaluate the following integral

sin6xcos7xdx \int \sin^6 x \cdot \cos^7 xdx

Solution:

In this example m=6m = 6 and n=7n = 7. Because nn is an odd integer we have:

Step 1:

sin6xcos7xdx=sin6xcos6xcosxdx\int \sin^6 x \cdot \color{blue}{\cos^7 x} dx = \int sin^6 x \color{blue}{\cos^6 x \cdot \cos x} dx

Step 2: Apply identity: cos2x=1sin2x\color{blue}{cos^2 x = 1 - \sin^2 x}.

sin6xcos6xcosxdx=sin6x(cos2x)3cosxdx==sin6x(1sin2x)3cosxdx \begin{aligned} &\int \sin^6 x \cdot \cos^6 x \cos xdx = \int \sin^6 x \cdot (\color{blue}{\cos^2 x})^3 \cdot \cos x dx = \\ &= \int \sin^6 x \cdot (\color{blue}{1-sin^2 x})^3 \cdot \cos x dx \end{aligned}

Step 3: Use the substitution u=sinx\color{blue}{u = \sin x}.

If u=sinx\color{blue}{u = \sin x}, then du=cosxdx\color{blue}{du = \cos x \cdot dx}, so:

sin6x(1sin2x)3cosxdx======du=cosxdxu=sinxu6(1u2)3du==u6(13u2+3u4u6)du=u63u8+3u10u12du==u773u99+3u1111u1313+C==17(sinx)713(sinx)9+311(sinx)11113(sinx)13+C \begin{aligned} \int {{\sin }^6}x{{(1 - {{\sin }^2}x)}^3} &\cdot \cos xdx \color{blue}{\mathop { = = = = = = }\limits_{du = \cos xdx}^{u = \sin x}} \int {{u^6}{{(1 - {u^2})}^3}} \cdot du = \\ &= \int {{u^6}(1 - 3{u^2} + 3{u^4} - {u^6})du} = \int {{u^6} - 3{u^8}} + 3{u^{10}} - {u^{12}}du = \\ &= \frac{{{u^7}}}{7} - 3\frac{{{u^9}}}{9} + 3\frac{{{u^{11}}}}{{11}} - \frac{{{u^{13}}}}{{13}} + C = \\ &= \frac{1}{7}{(\sin x)^7} - \frac{1}{3}{(\sin x)^9} + \frac{3}{{11}}{(\sin x)^{11}} - \frac{1}{{13}}{(\sin x)^{13}} + C \end{aligned}

Try yourself

sin2xcos3xdx= \color{blue}{\int \sin^2 x \cdot \cos^3 x dx = }
sin5xsin3x+C \sin^5 x - \sin^3 x + C 13sin3x+C \frac{1}{3} \sin^3 x + C 15sin5x13sin3x+C \frac{1}{5} \sin^5 x - \frac{1}{3} \sin^3 x + C 15sin5x13sin3x+C -\frac{1}{5} \sin^5 x - \frac{1}{3} \sin^3 x + C

Case 3: If both mm and nn are even, the following identities are used:

sin2x=1cos2x2  cos2x=1+cos2x2  sinxcosx=sin2x2\color{blue}{\sin^2 x = \frac{1 - \cos 2x}{2} \ \ \cos^2 x = \frac{1 + \cos 2x}{2} \ \ \sin x \cos x = \frac{\sin 2x}{2}}

Example 3: Evaluate the following integral

sin2xcos2xdx \int \sin^2 x \cdot \cos^2 x dx

Solution:

In this example m=2m = 2 and n=2n = 2. Because both mm and nn are even, the above noted identities are used.

sin2xcos2xdx=1cos2x21+cos2x2dx==14(1cos2x)(1+cos2x)dx======du=12du2x=u=18(1cosu)(1+cosu)du==181cos2udu=1811+cos2u2du=1161cos2udu======du=12dt2u=t1322costdt=132(2tsint)+C=132(22usin2u)+C=132(42xsin4x)+C=132(8xsin4x)+C \begin{aligned} \int \color{blue}{\sin^2 x} \cdot \color{red}{cos^2 x} dx &= \int \color{blue}{\frac{1 - \cos 2x}{2}} \cdot \color{red}{\frac{1 + \cos 2x}{2}}dx = \\ &= \frac{1}{4} \int(1 - \cos 2x)(1 + \cos 2x) dx \mathop { = = = = = = }\limits_{du = \frac{1}{2}du}^{2x = u} = \frac{1}{8} \int (1 - \cos u)(1 + \cos u) du = \\ &= \frac{1}{8} \int 1 - \color{red}{\cos^2 u} du = \frac{1}{8} \int 1 - \color{red}{\frac{1 + cos 2u}{2}} du = \frac{1}{16} \int 1 - \cos 2u du \mathop { = = = = = = }\limits_{du = \frac{1}{2}dt}^{2u = t} \frac{1}{32} \int 2 - \cos t dt \\ &= \frac{1}{32} (2t - \sin t) + C = \frac{1}{32} (2 \cdot 2u - \sin 2u) + C = \frac{1}{32} (4 \cdot 2x - \sin 4x) + C = \frac{1}{32} (8x - sin 4x) + C \end{aligned}

Try yourself

cos2xdx= \color{blue}{\int \cos^2 x dx = }
12x+14sin2x \frac{1}{2} x + \frac{1}{4} \sin 2x 12x14sin2x \frac{1}{2} x - \frac{1}{4} \sin 2x 12x14cos2x \frac{1}{2} x - \frac{1}{4} \cos 2x 12x+14cos2x \frac{1}{2} x + \frac{1}{4} \cos 2x