Integration Techniques: (lesson 3 of 4)
Integrals Involving Trigonometric Functions
Integrals of the form ∫sinmx⋅cosnxdx
Case 1: m is an odd integer :
Step 1: Write sinmx as sinm−1x⋅sinx.
Step 2: Apply identity: sin2x=1−cos2x
Step 3: Use the substitution u=cosx.
Example 1: Evaluate the following integral
∫sin3x⋅cos2xdx
Solution:
In this example m=3 and n=2. Because m is an odd integer we have:
Step 1:
∫sin5x⋅cos2xdx=∫sin4x⋅sinx⋅cos2xdx
Step 2: Apply: sin2x=1−cos2x, then continue:
∫sin4x⋅sinx⋅cos2xdx=∫(sin2x)2⋅sinx⋅cos2xdx=∫(1−cos2x)2⋅cos2x⋅sinxdx
Step 3: Use the substitution u=cosx.
If u=cosx,
then −sinxdx, so:
∫(1−cos2x)2⋅cos2x⋅sinxdxdu=−sinxdx======u=cosx∫(1−u2)2⋅u2du==∫(1−2u2+u4)⋅u2du=∫u2−2u4+u6du==3u3−25u5+7u7+C=31(cosx)3−52(cosx)5+71(cosx)7+C
Case 2: n is an odd integer :
Step 1: Write cosmx as cosm−1x⋅cosx.
Step 2: Apply identity: cos2x=1−sin2x
Step 3: Use the substitution u=sinx.
Example 2: Evaluate the following integral
∫sin6x⋅cos7xdx
Solution:
In this example m=6 and n=7. Because n is an odd integer we have:
Step 1:
∫sin6x⋅cos7xdx=∫sin6xcos6x⋅cosxdx
Step 2: Apply identity: cos2x=1−sin2x.
∫sin6x⋅cos6xcosxdx=∫sin6x⋅(cos2x)3⋅cosxdx==∫sin6x⋅(1−sin2x)3⋅cosxdx
Step 3: Use the substitution u=sinx.
If u=sinx,
then du=cosx⋅dx, so:
∫sin6x(1−sin2x)3⋅cosxdxdu=cosxdx======u=sinx∫u6(1−u2)3⋅du==∫u6(1−3u2+3u4−u6)du=∫u6−3u8+3u10−u12du==7u7−39u9+311u11−13u13+C==71(sinx)7−31(sinx)9+113(sinx)11−131(sinx)13+C
Case 3: If both m and n are even, the following identities are used:
sin2x=21−cos2x cos2x=21+cos2x sinxcosx=2sin2x
Example 3: Evaluate the following integral
∫sin2x⋅cos2xdx
Solution:
In this example m=2 and n=2. Because both m and n are even, the above noted identities are used.
∫sin2x⋅cos2xdx=∫21−cos2x⋅21+cos2xdx==41∫(1−cos2x)(1+cos2x)dxdu=21du======2x=u=81∫(1−cosu)(1+cosu)du==81∫1−cos2udu=81∫1−21+cos2udu=161∫1−cos2ududu=21dt======2u=t321∫2−costdt=321(2t−sint)+C=321(2⋅2u−sin2u)+C=321(4⋅2x−sin4x)+C=321(8x−sin4x)+C