« Exponential Functions - Introductions |
Example 1: Solve for $x$ in the equation
$3^x=9$
Solution:
$$ \begin{aligned} 3^x &= 9 \\ 3^x &= 3^2 \\ x &= 2 \end{aligned} $$
It is often necessary to use a logarithm when solving an exponential equation.
Example 2:
Solve for $x$ in the equation $3^x = 10$
Solution:
Step 1: Take the natural logarithm of both sides:
$\ln {3^x} = \ln 10$
Step 2: Use the rule $\ln {a^x} = x \ln a$.
$x \ln 3 = \ln 10$
Step 3: Find $x$:
$x = \frac{{\ln 10}}{{\ln 3}} \approx \frac{{2.302585}}{{1.098612}} \approx 2.0959$
Example 3:
Solve for $x$ in the equation $e^x = 10$
Solution:
Step 1: Take the natural logarithm of both sides:
$\ln{e^x} = \ln10$
Step 2: Use the rule $\ln{a^x} = x \ln{a}$.
$x \ln{e} = \ln10$
Step 3: Use the rule $\ln{e} = 1$
$x = \ln10$
Step 4: Find $x$
$x = \ln10 \approx 2.302585$
Example 4:
Solve for $x$ in the equation $10^{x+5} - 3 = 2$
Solution:
Step 1:Isolate the exponential term
$10^{x+5}-3=2$
$10^{x+5}=5$
Step 2: Take the natural logarithm of both sides:
$\ln{10^{x+5}} = \ln5$
Step 3: Use the rule $ln{a^x} = x \ln{a}$.
$(x+5) \ln10 = \ln5$
Step 4: Find $x$:
$x = \frac{\ln5}{\ln10}-5$
Example 5:
Solve for $x$ in the equation $3^{2x} - 5 \cdot 3^x + 6 = 0$
Solution:
Step 1: Rewrite the equation in quadratic form:
${(3^x)}^2 - 5 \cdot 3^x + 6 = 0$
Step 2: Factor the left side of the equation ${(3^x)}^2 - 5 \cdot 3^x + 6 = 0$.
${(3^x)}^2 - 5 \cdot 3^x + 6 = (3^x - 3) (3^x - 2)$
Step 3: Solve $3^x - 3 = 0$ and $3^x - 2 = 0$