Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Exponential Functions - Introductions
Exponential Functions: (lesson 2 of 3)

Exponential Equations

Very easy equation:

Example 1: Solve for xx in the equation

3x=93^x=9

Solution:

3x=93x=32x=2 \begin{aligned} 3^x &= 9 \\ 3^x &= 3^2 \\ x &= 2 \end{aligned}

Not so easy equations:

It is often necessary to use a logarithm when solving an exponential equation.

Example 2:

Solve for xx in the equation 3x=103^x = 10

Solution:

Step 1: Take the natural logarithm of both sides:

ln3x=ln10\ln {3^x} = \ln 10

Step 2: Use the rule lnax=xlna\ln {a^x} = x \ln a.

xln3=ln10x \ln 3 = \ln 10

Step 3: Find xx:

x=ln10ln32.3025851.0986122.0959x = \frac{{\ln 10}}{{\ln 3}} \approx \frac{{2.302585}}{{1.098612}} \approx 2.0959

Example 3:

Solve for xx in the equation ex=10e^x = 10

Solution:

Step 1: Take the natural logarithm of both sides:

lnex=ln10\ln{e^x} = \ln10

Step 2: Use the rule lnax=xlna\ln{a^x} = x \ln{a}.

xlne=ln10x \ln{e} = \ln10

Step 3: Use the rule lne=1\ln{e} = 1

x=ln10x = \ln10

Step 4: Find xx

x=ln102.302585x = \ln10 \approx 2.302585

Example 4:

Solve for xx in the equation 10x+53=210^{x+5} - 3 = 2

Solution:

Step 1:Isolate the exponential term

10x+53=210^{x+5}-3=2

10x+5=510^{x+5}=5

Step 2: Take the natural logarithm of both sides:

ln10x+5=ln5\ln{10^{x+5}} = \ln5

Step 3: Use the rule lnax=xlnaln{a^x} = x \ln{a}.

(x+5)ln10=ln5(x+5) \ln10 = \ln5

Step 4: Find xx:

x=ln5ln105x = \frac{\ln5}{\ln10}-5

Example 5:

Solve for xx in the equation 32x53x+6=03^{2x} - 5 \cdot 3^x + 6 = 0

Solution:

Step 1: Rewrite the equation in quadratic form:

(3x)253x+6=0{(3^x)}^2 - 5 \cdot 3^x + 6 = 0

Step 2: Factor the left side of the equation (3x)253x+6=0{(3^x)}^2 - 5 \cdot 3^x + 6 = 0.

(3x)253x+6=(3x3)(3x2){(3^x)}^2 - 5 \cdot 3^x + 6 = (3^x - 3) (3^x - 2)

Step 3: Solve 3x3=03^x - 3 = 0 and 3x2=03^x - 2 = 0