Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
« Introduction to Determinant
Determinants: (lesson 2 of 2)

Applications of Determinants

Cramer's rule:

For linear system An×nx=bA_{n \times n} x = b, if det(A)0\det(A) \ne 0, then the system has the unique solution,

x1=det(A1)det(A),x2=det(A2)det(A),...,xn=det(An)det(A)x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, ..., x_n = \frac{\det(A_n)}{\det(A)}

where Ai,  i=1,2,...,nA_i, \ \ i = 1,2,...,n, is the matrix obtained by replacing the i-th column of AA by bb.

Example 1:

Solve the following system of linear equations using the Cramer's rule,

x1+3x2+x3=22x1+5x2+x3=5x1+2x2+3x3=6 \begin{aligned} &x_1 + 3x_2 + x_3 = -2 \\ &2x_1 + 5x_2 + x_3 = -5 \\ &x_1 + 2x_2 + 3x_3 = 6 \end{aligned}

Solution:

The coefficient matrix A and the vector b are

A = \left[ {} \right], b = \left[ {} \right]

respectively. Then,

A = \left[ {} \right], {A_2} = \left[ {} \right], {A_3} = \left[ {} \right]

Thus, x1=det(A1)det(A)=33=1, x2=det(A2)det(A)=63=2, x3=det(A3)det(A)=3x_1 = \frac{\det(A_1)}{\det(A)} = \frac{-3}{-3} = 1 , \ x_2 = \frac{\det(A_2)}{\det(A)} = \frac{6}{-3} = -2 , \ x_3 = \frac{\det(A_3)}{\det(A)} = 3.

Areas:

Triangle:

Consider the triangle with vertices (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2) and (x3,y3)(x_3, y_3).

Triangle area

The area of the triangle is

\frac{1}{2}\left| {\left| {} \right|} \right| = \frac{1}{2}\left| {\det \left( {\left[ {} \right]} \right)} \right|.

Example 2:

Calculate the area of the triangle with vertices (1,4)(-1, 4), (3,1)(3,1) and (2,6)(2, 6).

Solution:

The area is

\frac{1}{2}\left| {\det \left( {\left[ {} \right]} \right)} \right| = \frac{1}{2} \cdot \left| {17} \right| = \frac{1}{2} \cdot 17 = 8.5 .

Parallelogram:

Suppose we have a parallelogram with vertices (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), (x3,y3)(x_3, y_3) and (x4,y4)(x_4, y_4),

Parallelogram area example

Then, the area of the parallelogram is

2 \cdot \frac{1}{2} \cdot \left| {\det \left( {\left[ {} \right]} \right)} \right| = \left| {\det \left( {\left[ {} \right]} \right)} \right|