« Multiplying and Dividing Rational Expressions |
|
To add/subtract rational expressions with the same denominator
1. Add/subtract the numerators. Write this sum/difference as the numerator over the common denominator.
2. Reduce to lowest terms.
Example 1
Simplify the following:
$\frac{{4x}}{{5y}} + \frac{{6x}}{{5y}}$
Solution
These fractions already have a common denominator
1: Write this sum as the numerator over the common denominator:
$\frac{{4x}}{{5y}} + \frac{{6x}}{{5y}} = \frac{{4x + 6x}}{{5y}}$
2: Reduce to lowest terms:
$\frac{{4x}}{{5y}} + \frac{{6x}}{{5y}} = \frac{{4x + 6x}}{{5y}} = \frac{{10x}}{{5y}} = \frac{{2x}}{y}$
Example 2
Simplify the following:
$\frac{{4x - 1}}{{x + 4}} - \frac{{2x - 9}}{{x + 4}}$
Solution
Again, these already have a common denominator
1: Write this sum as the numerator over the common denominator:
$\frac{{4x - 1}}{{x + 4}} - \frac{{2x - 9}}{{x + 4}} = \frac{{(4x - 1) - (2x - 9)}}{{x + 4}}$
2: Reduce to lowest terms:
$$\frac{{4x - 1}}{{x + 4}} - \frac{{2x - 9}}{{x + 4}} = \frac{{(4x - 1) - (2x - 9)}}{{x + 4}} = $$ $$ = \frac{{4x - 1 - 2x + 9}}{{x + 4}} = $$ $$ = \frac{{2x + 8}}{{x + 4}} = $$ $$ = \frac{{2\cancel{{(x + 4)}}}}{{\cancel{{x + 4}}}} = 2$$
Level 1
Level 2
1. Factor each denominator completely.
2. Build the LCD of the denominators.
3. Rewrite each rational expression with the LCD as the denominator.
4. Add/subtract the numerators.
Example 3:
Simplify the following:
$\frac{{5x - 1}}{{{x^2} - 3x + 2}} + \frac{3}{{2x - 4}}$
Solution 3:
1: Factor each denominator completely.
$\frac{{5x - 1}}{{{x^2} - 3x + 2}} + \frac{2}{{2x - 4}} = \frac{{5x - 1}}{{(x - 1)(x - 2)}} + \frac{3}{{2(x - 2)}}$
2: Build the LCD of the denominators.
$LCD = 2(x - 1)(x - 2)$
3: Rewrite each rational expression with the LCD as the denominator.
$$\frac{{5x - 1}}{{{x^2} - 3x + 2}} + \frac{3}{{2x - 4}} = \frac{{5x - 1}}{{(x - 1)(x - 2)}} + \frac{3}{{2(x - 2)}} = $$ $$ = \frac{{2(5x - 1)}}{{2(x - 1)(x - 2)}} + \frac{{3(x - 1)}}{{2(x - 1)(x - 2)}}$$
4: Add the numerators.
$$\frac{{5x - 1}}{{{x^2} - 3x + 2}} + \frac{3}{{2x - 4}} = \frac{{5x - 1}}{{(x - 1)(x - 2)}} + \frac{3}{{2(x - 2)}} = $$ $$ = \frac{{2(5x - 1)}}{{2(x - 1)(x - 2)}} + \frac{{3(x - 1)}}{{2(x - 1)(x - 2)}} = $$ $$ = \frac{{2(5x - 1) + 3(x - 1)}}{{2(x - 1)(x - 2)}} = $$ $$ = \frac{{13x - 5}}{{2(x - 1)(x - 2)}}$$
Example 4:
Simplify the following:
$\frac{{5x + 1}}{{{x^2} - 2x - 3}} - \frac{{5x - 3}}{{{x^2} - x - 6}}$
Solution 4:
1: Factor each denominator completely.
$\frac{{5x + 1}}{{{x^2} - 2x - 3}} - \frac{{5x - 3}}{{{x^2} - x - 6}} = \frac{{5x + 1}}{{(x - 3)(x + 1)}} - \frac{{5x - 3}}{{(x - 3)(x + 2)}}$
2: Build the LCD of the denominators.
$LCD = (x - 3)(x + 1)(x + 2)$
3: Rewrite each rational expression with the LCD as the denominator.
$$\frac{{5x + 1}}{{{x^2} - 2x - 3}} - \frac{{5x - 3}}{{{x^2} - x - 6}} = \frac{{5x + 1}}{{(x - 3)(x + 1)}} - \frac{{5x - 3}}{{(x - 3)(x + 2)}} = $$ $$ = \frac{{(5x + 1)(x + 2)}}{{(x - 3)(x + 1)(x + 2)}} - \frac{{(5x - 3)(x + 1)}}{{(x - 3)(x + 1)(x + 2)}}$$
4: Subtract the numerators.
$$\frac{{5x + 1}}{{{x^2} - 2x - 3}} - \frac{{5x - 3}}{{{x^2} - x - 6}} = \frac{{5x + 1}}{{(x - 3)(x + 1)}} - \frac{{5x - 3}}{{(x - 3)(x + 2)}} = $$ $$ = \frac{{(5x + 1)(x + 2)}}{{(x - 3)(x + 1)(x + 2)}} - \frac{{(5x - 3)(x + 1)}}{{(x - 3)(x + 1)(x + 2)}} = $$ $$ = \frac{{(5x + 1)(x + 2) - (5x - 3)(x + 1)}}{{(x - 3)(x + 1)(x + 2)}} = $$ $$ = \frac{{(5{x^2} + 10x + x + 2) - (5{x^2} + 5x - 3x - 3)}}{{(x - 3)(x + 1)(x + 2)}} = $$ $$ = \frac{{5{x^2} + 10x + x + 2 - 5{x^2} - 5x + 3x + 3)}}{{(x - 3)(x + 1)(x + 2)}} = $$ $$ = \frac{{9x + 5}}{{(x - 3)(x + 1)(x + 2)}}$$
Level 1
Level 2