Integration Techniques: (lesson 2 of 4)
Integration by Parts
Theorem:
The formula for the method of integration by parts is:
∫udv=u⋅v−∫vdu
There are four steps how to use this formula:
Step 1: Identify u and dv. Priorities for choosing
u are: 1. u=lnx 2. u=xn 3. u=eax
Step 2: Compute du and v
Step 3: Use the formula for the integration by parts
Example 1: Evaluate the following integral
∫x⋅sinxdx
Solution:
Step 1: In this example we choose u=x
and dv will be everything else that remains.
∫x⋅sinxdxu=x dv=sinxdx
Step 2: Compute du and v
∫x⋅sinxdxu=x du=x′dx du=dx dv=sinxdx v=∫sinxdx v=−cosx
Step 3: Apply the formula.
∫x⋅sinxdx=x⋅(−cosx)−∫(−cosx)dx
Therefore:
∫x⋅sinxdx=x⋅(−cosx)−∫(−cosx)dx=−x⋅cosx+∫cosxdx=−x⋅cosx+sinx+C
Example 2: Evaluate the following integral
∫x⋅lnxdx
Solution:
Step 1: In this example, choose u=lnx
(first priority) and dv=xdx.
∫x⋅lnxdxu=lnx dv=xdx
Step 2: Compute du and v
∫x⋅lnxdxu=lnx dv=xdxdu=(lnx)′dx v=∫xdxdu=x1dx v=2x2
Step 3: Use the formula.
∫x⋅lnxdx=lnx⋅2x2−∫2x2⋅x1dxu=lnx dv=xdxdu=(lnx)′dx v=∫xdxdu=x1dx v=2x2
The solution is:
∫x⋅lnxdx=lnx⋅2x2−∫2x2⋅x1dx=21x2lnx−21∫xdx=21x2lnx−4x2+C
Exercise 1: Evaluate the following integrals
Integration by parts twice
Example 3: Evaluate the following integral
∫x2⋅exdx
Solution:
Let:
u=x2 dv=exdx
So that
u=x2 dv=exdxu=(x2)′dx v=∫exdxu=2xdx v=ex
Therefore:
∫x2⋅exdx=2x⋅ex−∫2xexdx=2xex−2∫xexdx
It is needed to perform integration by parts again:
∫x2⋅exdx=x2⋅ex−∫2xexdx=x2ex−2∫xexdx==x2ex−2(x⋅ex−∫exdx)=x2ex−2(xex−ex)+C==x2ex−2xex+2x+C