Introduction to Integration: (lesson 1 of 2)
Integration Formulas
Here is a list of commonly used integration formulas.
Applications of each formula can be found on the following pages.
1:
∫xγdx=r+1xγ+1+C
1a:
∫kdx=kx+C
where k is a constant
2:
∫kf(x)=k∫f(x)dx
where k is a constant
3:
∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx
4:
∫exdx=ex+C
5:
∫ef(x)f′(x)dx=ef(x)+C
6:
∫x1dx=ln∣x∣+C
7:
∫f(x)f′(x)dx=ln∣f(x)∣+C
8: Integration by substitution
∫f(u)du=F(u)+C
where u=g(x) and du=g′(x)dx
9: Integration by parts
∫f(x)g′(x)dx=f(x)g(x)−∫f′(x)g(x)dx
10:
∫cosxdx=sinx+C
11:
∫[cosf(x)]f′(x)dx=sinf(x)+C
12:
∫sinxdx=−cosx+C
13:
∫[sinf(x)]f′(x)dx=−cosf(x)+C
14:
∫sec2xdx=tanx+C
15:
∫[sec2f(x)]f′(x)dx=tanf(x)+C