Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
Introduction to Integration: (lesson 1 of 2)

Integration Formulas

Here is a list of commonly used integration formulas. Applications of each formula can be found on the following pages.

1:

xγdx=xγ+1r+1+C\int {{x^\gamma }dx = \frac{{{x^{\gamma + 1}}}}{r + 1} + C}

1a:

kdx=kx+C\int {kdx = kx + C}

where kk is a constant

2:

kf(x)=kf(x)dx\int {kf(x) = k\int {f(x)dx} }

where kk is a constant

3:

[f(x)+g(x)]dx=f(x)dx+g(x)dx\int {\left[ {f(x) + g(x)} \right]dx = \int {f(x)dx + \int {g(x)dx} } }

4:

exdx=ex+C\int {{e^x}dx} = {e^x} + C

5:

ef(x)f(x)dx=ef(x)+C\int {{e^{f(x)}}} f'(x)dx = {e^{f(x)}} + C

6:

1xdx=lnx+C\int {\frac{1}{x}dx = \ln \left| x \right| + C}

7:

f(x)f(x)dx=lnf(x)+C\int {\frac{{f'(x)}}{{f(x)}}dx = \ln \left| {f(x)} \right| + C}

8: Integration by substitution

f(u)du=F(u)+C\int {f(u)du = F(u) + C}

where u=g(x)u = g(x) and du=g(x)dxdu = g'(x)dx

9: Integration by parts

f(x)g(x)dx=f(x)g(x)f(x)g(x)dx\int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} }

10:

cosxdx=sinx+C\int {\cos xdx = \sin x + C}

11:

[cosf(x)]f(x)dx=sinf(x)+C\int {\left[ {\cos f(x)} \right]f'(x)dx = \sin f(x) + C}

12:

sinxdx=cosx+C\int {\sin xdx = - \cos x + C}

13:

[sinf(x)]f(x)dx=cosf(x)+C\int {\left[ {\sin f(x)} \right]f'(x)dx = - \cos f(x) + C}

14:

sec2xdx=tanx+C\int {{{\sec }^2}xdx} = \tan x + C

15:

[sec2f(x)]f(x)dx=tanf(x)+C\int {\left[ {{{\sec }^2}f(x)} \right]} f'(x)dx = \tan f(x) + C