Limits: (lesson 5 of 5)
Lhospital Rule
L'Hospital's Rule for 0 0 \frac{0}{0} 0 0
Suppose that lim f ( x ) = lim g ( x ) = 0 \lim f(x) = \lim g(x) = 0 lim f ( x ) = lim g ( x ) = 0 . Then
If lim f ′ ( x ) g ′ ( x ) = L \lim \frac{f'(x)}{g'(x)} = L lim g ′ ( x ) f ′ ( x ) = L , then lim f ( x ) g ( x ) = lim f ′ ( x ) g ′ ( x ) = L \lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)} = L lim g ( x ) f ( x ) = lim g ′ ( x ) f ′ ( x ) = L .
If lim f ′ ( x ) g ′ ( x ) \lim \frac{f'(x)}{g'(x)} lim g ′ ( x ) f ′ ( x ) tends to ∞ \infty ∞ in the limit, then so does f ( x ) g ( x ) \frac{f(x)}{g(x)} g ( x ) f ( x ) .
Here is a case of 0 0 \frac{0}{0} 0 0 .
Example 1:
lim x → 0 sin x x = lim x → 0 ( sin x ) ′ x ′ = lim x → 0 cos x 1 = cos 0 = 1
\mathop {\lim }\limits_{x \to 0} \frac{\sin x}{x} = \mathop {\lim }\limits_{x \to 0} \frac{(\sin x)'}{x'} = \mathop {\lim }\limits_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1
x → 0 lim x sin x = x → 0 lim x ′ ( sin x ) ′ = x → 0 lim 1 cos x = cos 0 = 1
Example 2:
lim x → 1 ln x x − 1 = lim x → 1 ( ln x ) ′ ( x − 1 ) ′ = lim x → 1 1 x 1 = lim x → 1 1 x = 1
\mathop {\lim }\limits_{x \to 1} \frac{{\ln x}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{(\ln x)'}}{{(x - 1)'}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{x}}}{1} = \mathop {\lim }\limits_{x \to 1} \frac{1}{x} = 1
x → 1 lim x − 1 ln x = x → 1 lim ( x − 1 ) ′ ( ln x ) ′ = x → 1 lim 1 x 1 = x → 1 lim x 1 = 1
Example 3:
lim x → 0 e x − 1 x 2 = lim x → 0 ( e x − 1 ) ′ ( x 2 ) ′ = lim x → 0 e x 2 x = ∞
\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{({e^x} - 1)'}}{{({x^2})'}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^x}}}{{2x}} = \infty
x → 0 lim x 2 e x − 1 = x → 0 lim ( x 2 ) ′ ( e x − 1 ) ′ = x → 0 lim 2 x e x = ∞
Example 4:
Sometimes it is necessary to use L'Hospital's Rule several times in the same problem.
lim x → 0 1 − cos x x 2 = lim x → 0 sin x 2 x = lim x → 0 cos x 2 = 1 2
\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos x}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{{2x}} = \mathop {\lim }\limits_{x \to 0} \frac{{\cos x}}{2} = \frac{1}{2}
x → 0 lim x 2 1 − cos x = x → 0 lim 2 x sin x = x → 0 lim 2 cos x = 2 1
Example 5:
Here is a more elaborate example involving the indeterminate form 0 0 \frac{0}{0} 0 0 .
Applying the rule a single time still results in an indeterminate form. In this
case, the limit may be evaluated by applying L'Hospital's rule three
times:
lim x → 0 2 sin x − sin 2 x x − sin x = = lim x → 0 2 cos x − 2 cos 2 x 1 − cos x = = lim x → 0 − 2 sin x + 4 sin 2 x sin x = = lim x → 0 − 2 cos x + 8 cos 2 x cos x = = − 2 cos 0 + 8 cos 0 cos 0 = = 6
\begin{aligned}
&\mathop {\lim }\limits_{x \to 0} \frac{{2\sin x - \sin 2x}}{{x - \sin x}} = \\
&= \mathop {\lim }\limits_{x \to 0} \frac{{2\cos x - 2\cos 2x}}{{1 - \cos x}} = \\
&= \mathop {\lim }\limits_{x \to 0} \frac{{ - 2\sin x + 4\sin 2x}}{{\sin x}} = \\
&= \mathop {\lim }\limits_{x \to 0} \frac{{ - 2\cos x + 8\cos 2x}}{{\cos x}} = \\
&= \frac{{ - 2\cos 0 + 8\cos 0}}{{\cos 0}} = \\
&= 6
\end{aligned}
x → 0 lim x − sin x 2 sin x − sin 2 x = = x → 0 lim 1 − cos x 2 cos x − 2 cos 2 x = = x → 0 lim sin x − 2 sin x + 4 sin 2 x = = x → 0 lim cos x − 2 cos x + 8 cos 2 x = = cos 0 − 2 cos 0 + 8 cos 0 = = 6
L'Hospital's Rule for ∞ ∞ \frac{\infty }{\infty } ∞ ∞
Suppose lim f ( x ) = lim g ( x ) = ∞ \lim f(x) = \lim g(x) = \infty lim f ( x ) = lim g ( x ) = ∞ . Then
If lim f ′ ( x ) g ′ ( x ) = L \lim \frac{f'(x)}{g'(x)} = L lim g ′ ( x ) f ′ ( x ) = L , then lim f ( x ) g ( x ) = lim f ′ ( x ) g ′ ( x ) = L \lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)} = L lim g ( x ) f ( x ) = lim g ′ ( x ) f ′ ( x ) = L .
If lim f ′ ( x ) g ′ ( x ) \lim \frac{f'(x)}{g'(x)} lim g ′ ( x ) f ′ ( x ) tends to + ∞ + \infty + ∞ or − ∞ - \infty − ∞ in the limit, then so does f ( x ) g ( x ) \frac{f(x)}{g(x)} g ( x ) f ( x ) .
Here is a case of ∞ ∞ \frac{\infty }{\infty } ∞ ∞
Example 6:
lim x → ∞ x ln x = lim x → ∞ 1 / ( 2 x ) 1 / x = lim x → ∞ x 2 = ∞
\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt x }}{{\ln x}} = \mathop {\lim }\limits_{x \to \infty } \frac{{1/(2\sqrt x )}}{{1/x}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt x }}{2} = \infty
x → ∞ lim ln x x = x → ∞ lim 1/ x 1/ ( 2 x ) = x → ∞ lim 2 x = ∞
Example 7:
lim x → ∞ x n e − x = lim x → ∞ x n e x = lim x → ∞ n x n − 1 e x = n lim x → ∞ x n − 1 e x
\mathop {\lim }\limits_{x \to \infty } {x^n}{e^{ - x}} = \mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{e^x}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{n{x^{n - 1}}}}{{{e^x}}} = n\mathop {\lim }\limits_{x \to \infty } \frac{{{x^{n - 1}}}}{{{e^x}}}
x → ∞ lim x n e − x = x → ∞ lim e x x n = x → ∞ lim e x n x n − 1 = n x → ∞ lim e x x n − 1
Iterate the above until the exponent is 0. Then one sees that the limit is 0.
Example 8:
This one also involves ∞ ∞ \frac{\infty }{\infty } ∞ ∞ :
lim x → 0 + ( x ln x ) = lim x → 0 + ln x 1 / x = lim x → 0 + 1 / x − 1 / x 2 = lim x → 0 + − x = 0
\mathop {\lim }\limits_{x \to 0 + } (x\ln x) = \mathop {\lim }\limits_{x \to 0 + } \frac{{\ln x}}{{1/x}} = \mathop {\lim }\limits_{x \to 0 + } \frac{{1/x}}{{ - 1/{x^2}}} = \mathop {\lim }\limits_{x \to 0 + } - x = 0
x → 0 + lim ( x ln x ) = x → 0 + lim 1/ x ln x = x → 0 + lim − 1/ x 2 1/ x = x → 0 + lim − x = 0
Basic indeterminate forms (all others reduce to these):
0 0 and ∞ ∞ \frac{0}{0} \text{ and } \frac{\infty }{\infty } 0 0 and ∞ ∞
Other indeterminate forms:
∞ 0 1 ∞ 0 ⋅ ∞ 0 0 ∞ − ∞ \infty ^0 \ \ \ 1^\infty \ \ \ 0 \cdot \infty \ \ \ 0^0 \ \ \ \infty - \infty ∞ 0 1 ∞ 0 ⋅ ∞ 0 0 ∞ − ∞
Example 9:
To handle a case of ∞ − ∞ \infty - \infty ∞ − ∞ , the difference of two functions is converted to a quotient:
lim x → ∞ x − x 2 − x = lim x → ∞ ( x + x 2 − x ) ( x − x 2 − x ) x + x 2 − x = = lim x → ∞ x 2 − ( x 2 − x ) x + x 2 − x = = lim x → ∞ x x + x 2 − x = = lim x → ∞ 1 1 + 2 x − 1 2 x 2 − x = 1 1 + 1 = 1 2
\begin{aligned}
&\mathop {\lim }\limits_{x \to \infty } x - \sqrt {{x^2} - x} = \mathop {\lim }\limits_{x \to \infty } \frac{{(x + \sqrt {{x^2} - x} )(x - \sqrt {{x^2} - x} )}}{{x + \sqrt {{x^2} - x} }} = \\
&= \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} - ({x^2} - x)}}{{x + \sqrt {{x^2} - x} }} = \\
&= \mathop {\lim }\limits_{x \to \infty } \frac{x}{{x + \sqrt {{x^2} - x} }} = \\
&= \mathop {\lim }\limits_{x \to \infty } \frac{1}{{1 + \frac{{2x - 1}}{{2\sqrt {{x^2} - x} }}}} = \frac{1}{{1 + 1}} = \frac{1}{2}
\end{aligned}
x → ∞ lim x − x 2 − x = x → ∞ lim x + x 2 − x ( x + x 2 − x ) ( x − x 2 − x ) = = x → ∞ lim x + x 2 − x x 2 − ( x 2 − x ) = = x → ∞ lim x + x 2 − x x = = x → ∞ lim 1 + 2 x 2 − x 2 x − 1 1 = 1 + 1 1 = 2 1
Example 10:
To handle a case of 0 0 0^0 0 0 , the difference of two functions is converted to a quotient:
lim x → 0 x x = lim x → 0 e ln ( x x ) = lim x → 0 e x ln x = lim x → 0 e 0 = 1 \mathop {\lim }\limits_{x \to 0} {x^x} = \mathop {\lim }\limits_{x \to 0} {e^{\ln ({x^x})}} = \mathop {\lim }\limits_{x \to 0} {e^{x\ln x}} = \mathop {\lim }\limits_{x \to 0} {e^0} = 1 x → 0 lim x x = x → 0 lim e l n ( x x ) = x → 0 lim e x l n x = x → 0 lim e 0 = 1
When NOT to use L'Hospital's rule
lim x → 0 cos x x ≠ lim x → 0 ( cos x ) ′ x ′ \mathop {\lim }\limits_{x \to 0} \frac{\cos x}{x} \ne \mathop {\lim }\limits_{x \to 0} \frac{(\cos x)'}{x'} x → 0 lim x cos x = x → 0 lim x ′ ( cos x ) ′
because lim x → 0 cos x = 1 ≠ 0 \mathop {\lim }\limits_{x \to 0} \cos x = 1 \color{red}{\ne} 0 x → 0 lim cos x = 1 = 0