To simplify a rational expression:
1. Factor numerator as much as possible.
2. Factor denominator as much as possible
3. Cancel common factors.
Example 1
Simplify the following rational expression:
$\frac{{2x + 4}}{{3x + 6}}$
Solution
1: Factor numerator: $2x + 4 = 2(x + 2)$
2: Factor denominator: $3x + 6 = 3(x + 2)$
3: Cancel common factors:
$\frac{{2x + 4}}{{3x + 6}} = \frac{{2\cancel{{(x + 2)}}}}{{3\cancel{{(x + 2)}}}} = \frac{2}{3}$
Example 2
Simplify the following rational expression:
$\frac{{4 - 2x}}{{3x - 6}}$
Solution
1: Factor numerator: $4 - 2x = 2(2 - x)$
2: Factor denominator: $3x - 6 = 3(x - 2)$
3: Cancel common factors:
$\frac{{4 - 2x}}{{3x - 6}} = \frac{{2(2 - x)}}{{3(x - 2)}}$
The factors 2 - x and x - 2 are almost the same, but not quite, so they can't be cancelled. Remember to switch the sign out front: 2 - x = -(x - 2)
$\frac{{4 - 2x}}{{3x - 6}} = \frac{{2(2 - x)}}{{3(x - 2)}} = \frac{{ - 2(x - 2)}}{{3(x - 2)}} = - \frac{2}{3}$
Level 1
Level 2
Factor a quadratic trinomial
To factor a quadratic trinomial we will use following formula
$a{x^2} + bx + c = a(x - {x_1}) + (x - {x_2})$ where ${x_{1,2}} = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Example 3 (IMPORTANT)
Factor the trinomial 2x2 + 3x - 2
Solution 3
In this example a = 2, b = 3, c = -2. Plugging these numbers into the quadratic formula we get:
$${x_{1,2}} = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2z}}$$ $${x_{1,2}} = \frac{{ - 3 \pm \sqrt {{3^2} - 4 \cdot 2 \cdot ( - 2)} }}{{2 \cdot 2}}$$ $${x_{1,2}} = \frac{{ - 3 \pm 5}}{4}$$ $${x_1} = \frac{{ - 3 + 5}}{4}$$ $${x_2} = \frac{{ - 3 - 5}}{4}$$ $${x_1} = \frac{1}{2}$$ $${x_2} = - 2$$
We then have: $2{x^2} + 3x - 2 = 2 \cdot \left( {x - \frac{1}{2}} \right)\left( {x + 2} \right)$
Example 4
Simplify the following rational expression:
$\frac{{2{x^2} - x - 1}}{{ - {x^2} + 3x - 2}}$
Solution
Again, the first thing that we will do here is factor the numerator and denominator.
1: Factor numerator:
$2{x^2} - x - 1 = 2(x - 1)\left( {x + \frac{1}{2}} \right)$
2: Factor denominator:
$ - {x^2} + 3x - 2 = - (x - 1)(x - 2)$
3: Cancel common factors:
$\frac{{2{x^2} - x - 1}}{{ - {x^2} + 3x - 2}} = \frac{{2\cancel{{(x - 1)}}\left( {x + \frac{1}{2}} \right)}}{{ - \cancel{{(x - 1)}}(x - 2)}} = \frac{{2\left( {x + \frac{1}{2}} \right)}}{{ - (x - 2)}} = \frac{{2x + 1}}{{ - x + 2}}$
Nothing else will cancel and so we have reduced this expression to lowest terms.
Level 1
Level 2