Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
Rational Expressions: (lesson 1 of 3)

Simplifying Rational Expressions

To simplify a rational expression:

1. Factor numerator as much as possible.

2. Factor denominator as much as possible

3. Cancel common factors.

Numerator and denominator are linear functions

Example 1

Simplify the following rational expression:

2x+43x+6\frac{{2x + 4}}{{3x + 6}}

Solution

1: Factor numerator: 2x+4=2(x+2)2x + 4 = 2(x + 2)

2: Factor denominator: 3x+6=3(x+2)3x + 6 = 3(x + 2)

3: Cancel common factors:

2x+43x+6=2(x+2)3(x+2)=23\frac{{2x + 4}}{{3x + 6}} = \frac{{2\cancel{{(x + 2)}}}}{{3\cancel{{(x + 2)}}}} = \frac{2}{3}

Example 2

Simplify the following rational expression:

42x3x6\frac{{4 - 2x}}{{3x - 6}}

Solution

1: Factor numerator: 42x=2(2x)4 - 2x = 2(2 - x)

2: Factor denominator: 3x6=3(x2)3x - 6 = 3(x - 2)

3: Cancel common factors:

42x3x6=2(2x)3(x2)\frac{{4 - 2x}}{{3x - 6}} = \frac{{2(2 - x)}}{{3(x - 2)}}

The factors 2 - x and x - 2 are almost the same, but not quite, so they can't be cancelled. Remember to switch the sign out front: 2 - x = -(x - 2)

42x3x6=2(2x)3(x2)=2(x2)3(x2)=23\frac{{4 - 2x}}{{3x - 6}} = \frac{{2(2 - x)}}{{3(x - 2)}} = \frac{{ - 2(x - 2)}}{{3(x - 2)}} = - \frac{2}{3}

Exercise 1: Simplify the following expression

Level 1

4x+82x+4= \color{blue}{\frac{{4x + 8}}{{2x + 4}} = } 2 -2
12 - \frac{1}{2}
12 \frac{1}{2}
2 2

Level 2

48x12x6= \color{blue}{\frac{{4 - 8x}}{{12x - 6}} = } 23 - \frac{2}{3}
23 \frac{2}{3}
32 \frac{3}{2}
32 - \frac{3}{2}

Numerator and denominator are quadratic trinomials

Factor a quadratic trinomial

To factor a quadratic trinomial we will use following formula

ax2+bx+c=a(xx1)+(xx2)a{x^2} + bx + c = a(x - {x_1}) + (x - {x_2}) where x1,2=b±b24ac2a{x_{1,2}} = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

Example 3 (IMPORTANT)

Factor the trinomial 2x2 + 3x - 2

Solution 3

In this example a = 2, b = 3, c = -2. Plugging these numbers into the quadratic formula we get:

x1,2=b±b24ac2z{x_{1,2}} = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2z}} x1,2=3±3242(2)22{x_{1,2}} = \frac{{ - 3 \pm \sqrt {{3^2} - 4 \cdot 2 \cdot ( - 2)} }}{{2 \cdot 2}} x1,2=3±54{x_{1,2}} = \frac{{ - 3 \pm 5}}{4} x1=3+54{x_1} = \frac{{ - 3 + 5}}{4} x2=354{x_2} = \frac{{ - 3 - 5}}{4} x1=12{x_1} = \frac{1}{2} x2=2{x_2} = - 2

We then have: 2x2+3x2=2(x12)(x+2)2{x^2} + 3x - 2 = 2 \cdot \left( {x - \frac{1}{2}} \right)\left( {x + 2} \right)

Example 4

Simplify the following rational expression:

2x2x1x2+3x2\frac{{2{x^2} - x - 1}}{{ - {x^2} + 3x - 2}}

Solution

Again, the first thing that we will do here is factor the numerator and denominator.

1: Factor numerator:

2x2x1=2(x1)(x+12)2{x^2} - x - 1 = 2(x - 1)\left( {x + \frac{1}{2}} \right)

2: Factor denominator:

x2+3x2=(x1)(x2) - {x^2} + 3x - 2 = - (x - 1)(x - 2)

3: Cancel common factors:

2x2x1x2+3x2=2(x1)(x+12)(x1)(x2)=2(x+12)(x2)=2x+1x+2\frac{{2{x^2} - x - 1}}{{ - {x^2} + 3x - 2}} = \frac{{2\cancel{{(x - 1)}}\left( {x + \frac{1}{2}} \right)}}{{ - \cancel{{(x - 1)}}(x - 2)}} = \frac{{2\left( {x + \frac{1}{2}} \right)}}{{ - (x - 2)}} = \frac{{2x + 1}}{{ - x + 2}}

Nothing else will cancel and so we have reduced this expression to lowest terms.

Exercise 2: Simplify the following expression

Level 1

x2+2x3x23x+2= \color{blue}{\frac{{{x^2} + 2x - 3}}{{{x^2} - 3x + 2}} = } x3x+2 \frac{{x - 3}}{{x + 2}}
x2x+3 \frac{{x - 2}}{{x + 3}}
x+3x2 \frac{{x + 3}}{{x - 2}}
x+2x3 \frac{{x + 2}}{{x - 3}}

Level 2

2x2x33x2+x2= \color{blue}{\frac{{2{x^2} - x - 3}}{{3{x^2} + x - 2}} = } 2x+33x2 \frac{{2x + 3}}{{3x - 2}}
2x33x+2 \frac{{2x - 3}}{{3x + 2}}
2x+33x+2 \frac{{2x + 3}}{{3x + 2}}
2x33x2 \frac{{2x - 3}}{{3x - 2}}