Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Math formulas: Planes in three dimensions

0 formulas included in custom cheat sheet

Plane forms

Point direction form:

a(xx1)+b(yy1)+c(zz1)=0 a(x-x_1) + b(y-y_1) + c(z-z_1) = 0

where P(x1,y1,z1)P(x_1, y_1, z_1) lies in the plane, and the direction (a,b,c)(a,b,c) is normal to the plane.

General form:

Ax+By+Cz+D=0 Ax + By + Cz + D = 0

where direction (A,B,C)(A,B,C) is normal to the plane.

Intercept form:

xa+yb+zc=1 \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

this plane passes through the points (a,0,0),(0,b,0)(a,0,0), (0,b,0) and (0,0,c)(0,0,c).

Three point form:

xx3yy3zz3x1x3y1y3z1z3x2x3y2y3z2z3=0 \begin{vmatrix} x-x_3 & y-y_3 & z-z_3 \\ x_1-x_3 & y_1-y_3 & z_1-z_3 \\ x_2-x_3 & y_2-y_3 & z_2-z_3 \end{vmatrix} = 0

Normal form:

xcosα+ycosβ+zcosγ=p x\,\cos \alpha + y\,\cos\beta + z\,\cos\gamma = p

Parametric form:

x=x1+a1s+a2ty=y1+b1s+b2tz=z1+c1s+c2t \begin{aligned} x &= x_1 + a_1\,s + a_2\,t \\ y &= y_1 + b_1\,s + b_2\,t \\ z &= z_1 + c_1\,s + c_2\,t \end{aligned}

where the directions (a1,b1,c1)(a_1, b_1, c_1) and (a2,b2,c2)(a_2, b_2, c_2) are parallel to the plane.

Angle between two planes:

The angle between planes A1x+B1y+C1z+D1=0A_1x + B_1y + C_1z + D_1 = 0 and A2x+B2y+C2z+D2=0A_2x + B_2y + C_2z + D_2 = 0 is:

α=arccosA1A2+B1B2+C1C2A12+B12+C12A22+B22+C22 \alpha = \arccos \frac{A_1A_2 + B_1B_2 + C_1C_2} {\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}

The planes are parallel if and only if

A1A2=B1B2=C1C2 \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}

Equation of a plane

The equation of a plane through P1(x1,y1,z1)P_1(x_1, y_1, z_1) and parallel to directions (a1,b1,c1)(a_1, b_1, c_1) and (a2,b2,c2)(a_2, b_2, c_2) has an equation:

xx1yy1zz1a1b1c1a2b2c2=0 \begin{vmatrix} x-x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0

The equation of a plane through P1(x1,y1,z1)P_1(x_1, y_1, z_1) andP1(x2,y2,z2)P_1(x_2, y_2, z_2)), and parallel to direction (a,b,c)(a,b,c), has equation

xx1yy1zz1x2x1y2y1z2z1abc=0 \begin{vmatrix} x-x_1 & y - y_1 & z - z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a & b & c \end{vmatrix} = 0

The equation of a plane through P1(x1,y1,z1)P_1(x_1, y_1, z_1) , P2(x2,y2,z2)P_2(x_2, y_2, z_2) and P3(x3,y3,z3)P_3(x_3, y_3, z_3) , has equation

xx1yy1zz1x2x1y2y1z2z1x3x1y3y1z3z1=0 \begin{vmatrix} x-x_1 & y - y_1 & z - z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0

Distance from point to plane

The distance of P1(x1,y1,z1)P_1(x_1, y_1, z_1) from the plane Ax+By+Cz+D=0Ax + By + Cz + D = 0 is

d=Ax1+By1+Cz1A2+B2+C2 d = \frac{Ax_1 + By_1 + Cz_1}{\sqrt{A^2 + B^2 + C^2}}

Intersection of two planes

The intersection of planes A1x+B1y+C1z+D1=0A_1x + B_1y + C_1z + D_1 = 0 and A2x+B2y+C2z+D2=0A_2x + B_2y + C_2z + D_2 = 0 is the line:

xx1a=yy1b=zz1c \frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}

where

a=B1C1B2C2  b=C1A1C2A2  c=A1B1A2B2x1=bD1C1D2C2cD1B1D2B2a2+b2+c2y1=cD1A1D2A2aD1C1D2C2a2+b2+c2z1=aD1B1D2B2bD1A1D2A2a2+b2+c2 \begin{aligned} a &= \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}~~ b = \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}~~ c = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \\ x_1&= \frac{b\begin{vmatrix}D_1& C_1 \\ D_2 & C_2 \end{vmatrix} - c\begin{vmatrix}D_1& B_1 \\ D_2 & B_2 \end{vmatrix} }{a^2 + b^2 + c^2} \\ y_1&= \frac{c\begin{vmatrix}D_1& A_1 \\ D_2 & A_2 \end{vmatrix} - a\begin{vmatrix}D_1& C_1 \\ D_2 & C_2 \end{vmatrix} }{a^2 + b^2 + c^2} \\ z_1&= \frac{a\begin{vmatrix}D_1& B_1 \\ D_2 & B_2 \end{vmatrix} - b\begin{vmatrix}D_1& A_1 \\ D_2 & A_2 \end{vmatrix} }{a^2 + b^2 + c^2} \end{aligned}

If a=b=c=0 a = b = c = 0 , then the planes are parallel.

Was these formulas helpful?

Yes No