Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Rectangle calculator

google play badge app store badge

The rectangle solver finds missing width, length, diagonal, area or perimeter of a rectangle. The calculator accepts all types of input values, including fractions and square roots, and provides step-by-step explanation.

Find the diagonal $ d $ of a rectangle if side $a = \frac{ 3 }{ 2 }$ and perimeter $P = \frac{ 11 }{ 2 }$.

solution

$$ d = \frac{\sqrt{ 61 }}{ 4 } $$

explanation

STEP 1: find side $ b $

To find side $ b $ use formula:

$$ P = 2 a + 2 b $$

After substituting $ P = \frac{ 11 }{ 2 } $ and $ a = \frac{ 3 }{ 2 } $ we have:

$$ \frac{ 11 }{ 2 } = 2 \cdot \frac{ 3 }{ 2 } + 2 b $$ $$ \frac{ 11 }{ 2 } = 3 + 2 b $$ $$ 2 b = \frac{ 11 }{ 2 } - 3 $$ $$ 2 b = \frac{ 5 }{ 2 } $$ $$ b = \dfrac{ \frac{ 5 }{ 2 } }{ 2 } $$ $$ b = \frac{ 5 }{ 4 } $$

STEP 2: find diagonal $ d $

To find diagonal $ d $ use Pythagorean Theorem:

$$ a^2 + b^2 = d^2 $$

After substituting $ a = \frac{ 3 }{ 2 } $ and $ b = \frac{ 5 }{ 4 } $ we have:

$$ \left(\frac{ 3 }{ 2 }\right)^2 + \left(\frac{ 5 }{ 4 }\right)^2 = d^2 $$ $$ \frac{ 9 }{ 4 } + \frac{ 25 }{ 16 } = d^2 $$ $$ d^2 = \frac{ 61 }{ 16 } $$ $$ d = \sqrt{ \frac{ 61 }{ 16 } } $$$$ d = \frac{\sqrt{ 61 }}{ 4 } $$

Report an Error!

Script name : rectangle-calculator

Form values: 3 , 3/2 , 11/2 , g , Find the diagonal d of a rectangle if side a = 3/2 and perimeter P = 11/2 . , , ,

Comment (optional)

 
close
Rectangle calculator
Input two elements of a rectangle and select element to find.
help ↓↓ examples ↓↓ tutorial ↓↓
Solve for
Input any two elements of a rectangle.
a =
 
b =
d =
 
A =
P =
 
thumb_up 147 thumb_down

Get Widget Code

working...
Rectangle formulas
Rectangle drawing showing height, width, diagonal and area.
$$ A = ab $$
area
$$ P = 2a + 2b $$
perimeter
$$ d^2 = a^2 + b^2 $$
diagonal
Examples
ex 1:
Find the area of the rectangle whose sides are $ a = \dfrac{5}{3} $ and $ b = \dfrac{3}{2} $.
ex 2:
If the diagonal is 9 cm and one side is 5 cm, find the area of a rectangle.
ex 3:
A rectangle has an area of 18 cm2 and a side length of 16/5cm. Determine the perimeter.
Find more worked-out examples in our database of solved problems..
Search our database with more than 300 calculators
TUTORIAL

Rectangle calculations

This calculator uses the following formulas to find the missing values of a rectangle:

Area: $$ A = a \cdot b $$ rectangle
Perimeter: $$ P = 2a + 2b $$
Diagonal: $$ d^2 = a^2 + b^2 $$

Example 01 :

What is the area of a rectangle with a base of 12 cm and a height of 3/2 cm?

Solution:

base $ a = 6 $

height $ b = \dfrac{9}{2} $

$$ \color{blue}{A = a \cdot b} = 6 \cdot \frac{9}{2} = \frac{54}{2} = 27 $$

Example 02 :

What is the perimeter of a rectangle with a length of 7/2cm and a width of 5/2cm?

Solution:

length $ a = \dfrac{7}{2} \, cm $

width $ b = \dfrac{5}{2} \, cm $

$$ \color{blue}{P = 2a + 2b} = 2 \cdot \frac{7}{2} + 2 \cdot \dfrac{5}{2} = 7 + 5 = 12 $$

Example 03 :

The area of a rectangle is 42 cm2. Find its perimeter if the width is 7cm.

Solution:

We'll need two steps to solve this one:

Step 1: find length ( b ):

width $ a = 7 cm $

area: $ A = 42 cm $

$$ \begin{aligned} A & = a \cdot b \\[ 1 em] 42 & = 7 \cdot b \\[ 1 em] b & = \frac{42}{7}\\[ 1 em] b & = 6 \\[ 1 em] \end{aligned} $$

Step 2: find perimeter ( P )

width $ a = 7 cm $

length $ b = 6 cm $

$$ \begin{aligned} P & = 2a + 2b \\[ 1 em] P & = 2 \cdot 7 + 2 \cdot 6 \\[ 1 em] P & = 14 + 12 \\[ 1 em] P & = 28 \, cm^2 \\[ 1 em] \end{aligned} $$

Example 04 :

What is the diagonal of a rectangle if the perimeter is P = 11/2 cm and a width is a = 3/2 cm ?

Solution:

Step 1: find length ( b ):

width $ a = \dfrac{3}{2} cm $

perimeter: $ P = \dfrac{11}{2} cm $

$$ \begin{aligned} P & = 2a + 2b \\[ 1 em] \frac{11}{2} & = 2 \cdot \frac{3}{2} + 2b \\[ 1 em] \frac{11}{2} & = 3 + 2b \\[ 1 em] 2b &= \frac{11}{2} - 3 \\[1 em] 2b &= \frac{5}{2} \\[1 em] b &= \frac{5}{4} \end{aligned} $$

Step 2: find diagonal ( d )

width $ a = \dfrac{3}{2} cm $

length $ b = \dfrac{5}{4} cm $

$$ \begin{aligned} d^2 & = a^2 + b^2 \\[ 1 em] d^2 & = \left( \frac{3}{2} \right)^2 + \left( \frac{5}{4} \right)^2 \\[ 1 em] d^2 & = \frac{9}{4} + \frac{25}{16} \\[ 1 em] d^2 & = \frac{61}{16} \\[ 1 em] d & = \frac{\sqrt{61}}{4} \end{aligned} $$
Search our database with more than 300 calculators
362 861 664 solved problems
×
ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.