This calculator performs long division on two polynomials. It divides any polynomial by a polynomial of equal or lower degree. The calculator displays all steps on how the work was done.
We can present long division algorithm with a simple example. Consider dividing the polynomial 3x2+4x-3 by x-3 using long division method. We can address this problem using a step-by-step approach.
Step 1: Identify the divisor and dividend and set up the division problem. In our example, the divisor is 3x2+4x-3, and the dividend is x-3. The division problem is:
_______________ x-3 | 3x^2+4x-3
Step 2:Divide the first term of a dividend 3x^2 by the first term of the divisor x.
3x _______________ x-3 | 3x^2+4x-3
Step 3:Multiply the divisor x-3 by the result from the last step (3x).
3x _______________ x-3 | 3x^2+4x-3 3x^2-9x
Step 4:Subtract
3x _______________ x-3 | 3x^2+4x-3 3x^2-9x _________ 13x-3
Step 5:Divide 13x by the first term of the divisor x.
3x+13 _______________ x-3 | 3x^2+4x-3 3x^2-9x _________ 13x-3
Step 6:Multiply
3x+13 _______________ x-3 | 3x^2+4x-3 3x^2-9x _________ 13x-3 13x-39
Step 7:Subtract
3x+13 _______________ x-3 | 3x^2+4x-3 3x^2-9x _________ 13x-3 13x-39 ----- 36
Solution: The quotient is 3x+13 and the remainder is 36.
1. Synthetic division calculator
2. Long division calculator for integers
3. Tutorial on how to perform polynomial long division
4. Solved long division example — video tutorial.