Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Quadratic function plotter

google play badge app store badge

This calculator graphs the quadratic function of the form f(x)=ax2+bx+x. The solver also finds the x and y intercepts, vertex and focus of a quadratic function. Calculator shows all the work and provides detailed explanation for each step.

Quadratic function plotter
Graphing functions of the form y=ax2+bx+c
help ↓↓ examples ↓↓ tutorial ↓↓
+
+
thumb_up 1154 thumb_down

Get Widget Code

working...
Examples
ex 1:
Graph quadratic function: y=x2/2-3x-4.
ex 2:
Graph the function f(x)=x2+0.5x-2/3.
ex 3:
Graph the function f(x)=- x2+5/4.
Find more worked-out examples in our database of solved problems..

About Graphing Quadratic Functions

Quadratic function has the form $ f(x) = ax^2 + bx + c $ where a, b and c are numbers

You can sketch quadratic function in 4 steps. I will explain these steps in following examples.

Example 1:

Sketch the graph of the quadratic function

$$ {\color{blue}{ f(x) = x^2+2x-3 }} $$

Solution:

In this case we have $ a=1, b=2 $ and $c=-3$

STEP 1: Find the vertex.

To find x - coordinate of the vertex we use formula:

$$ x=-\frac{b}{2a} $$

So, we substitute $1$ in for $a$ and $2$ in for $b$ to get

$$ x=-\frac{b}{2a} = -\frac{2}{2\cdot1} = -1 $$

To find y - coordinate plug in $x=-1$ into the original equation:

$$ y = f(-1) = (-1)^2 + 2\cdot(-1) - 3 = 1 - 2 - 3 = -4 $$

So, the vertex of the parabola is $ {\color{red}{ (-1,-4) }} $


STEP 2: Find the y-intercept.

To find y - intercept plug in $x=0$ into the original equation:

quadratic function graph
$$ f(0) = (0)^2 + 2\cdot(0) - 3 = 0 - 0 - 3 = -3 $$

So, the y-intercept of the parabola is $ {\color{blue}{ y = -3 }} $

STEP 3: Find the x-intercept.

To find x - intercept solve quadratic equation $f(x)=0$ in our case we have:

$$ x^2+2x-3 = 0 $$

Solutions for this equation are:

$$ {\color{blue}{ x_1 = -3 }} ~~~\text{and}~~~ {\color{blue}{ x_2 = 1 }} $$

( to learn how to solve quadratic equation use quadratic equation solver )

STEP 4: plot the parabola.


Example 2:

Sketch the graph of the quadratic function

$$ {\color{blue}{ f(x) = -x^2+2x-2 }} $$

Solution:

Here we have $ a=-1, b=2 $ and $c=-2$

The x-coordinate of the vertex is:

$$ {\color{blue}{ x = -\frac{b}{2a} }} = -\frac{2}{2\cdot(-1)}= 1 $$
quadratic function graph 2

The y-coordinate of the vertex is:

$$ y = f(1) = -1^2+2\cdot1-2 = -1 + 2 - 2 = -1 $$

The y-intercept is:

$$ y = f(0) = -0^2+2\cdot0-2 = -0 + 0 - 2 = -2 $$

In this case x-intercept doesn't exist since equation $-x^2+2x-2=0$ does not has the solutions (use quadratic equation solver to check ). So, in this case we will plot the graph using only two points

Search our database with more than 300 calculators
362 861 664 solved problems
×
ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.