0 formulas included in custom cheat sheet |
Number of terms in the series: $n$
First term: $a_1$
$N^{th}$ term: $a_n$
Sum of the first $n$ terms: $S_n$
Difference between successive terms: $d$
Common ratio: $q$
Sum to infinity: $S$
|
$$ a_n = a_1 + (n-1)d $$ |
|
$$ a_i = \frac{a_{i-1} + a_{i+1}}{2} $$ |
|
$$ S_n = \frac{a_1 + a_n}{2} \cdot n $$ |
|
$$ S_n = \frac{2 \cdot a_1 + (n-1) \cdot d}{2} \cdot n $$ |
|
$$ a_n = a_1 \cdot q^{n-1} $$ |
|
$$ a_i = \sqrt{a_{i-1} \cdot a_{i+1}} $$ |
|
$$ S_n = \frac{a_nq - a_1}{q-1} $$ |
|
$$ S_n = \frac{a_1 \cdot \left(q^n - 1 \right)}{q-1} $$ |
|
$$ S = \frac{a_1}{1-q}, \quad (\text{for } -1 < q < 1)$$ |
Please tell me how can I make this better.