Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
Notice: Click here to get the most up-to-date list of all set identities.

Math formulas: Set identities

0 formulas included in custom cheat sheet

Definitions:

Universal set : I I

Empty set: \varnothing

Union of sets

AB={x:xA  or  xB} A \cup B = \left\{x : x \in A ~~ or ~~ x \in B \right\}

Intersection of sets

AB={x:xA  and  xB} A \cap B = \left\{x : x \in A ~~ and ~~ x \in B \right\}

Complement

A={xI:x∉A} A' = \left\{ x \in I : x \not \in A \right\}

Difference of sets

AB={x:xA  and  x∉B} A \setminus B = \left\{x : x \in A ~~ and ~~ x \not \in B \right\}

Cartesian product

A×B={(x,y):xA  and  yB} A \times B = \left\{ (x,y) : x \in A ~~ and ~~ y \in B \right\}

Set identities involving union

Commutativity

AB=BA A \cup B = B \cup A

Associativity

A(BC)=(AB)C A \cup \left(B \cup C \right) = \left( A \cup B \right) \cup C

Idempotency

AA=A A \cup A = A

Set identities involving intersection

Commutativity

AB=BA A \cap B = B \cap A

Associativity

A(BC)=(AB)C A \cap \left(B \cap C \right) = \left( A \cap B \right) \cap C

Idempotency

AA=A A \cap A = A

Set identities involving union and intersection

Distributivity

A(BC)=(AB)(AC) A \cup \left(B \cap C \right) = \left(A \cup B \right) \cap \left(A \cup C \right)
A(BC)=(AB)(AC) A \cap \left(B \cup C \right) = \left(A \cap B \right) \cup \left(A \cap C \right)

Domination

A= A \cap \varnothing = \varnothing
AI=I A \cup I = I

Identity

A= A \cup \varnothing = \varnothing
AI=A A \cap I = A

Set identities involving union, intersection and complement

Complement of intersection and union

AA=I A \cup A' = I
AA= A \cap A' = \varnothing

De Morgan's laws

(AB)=AB \left( A \cup B \right)' = A' \cap B~'
(AB)=AB  \left(A \cap B \right)' = A' \cup B~'

Set identities involving difference

BA=B(AB) B \setminus A = B \setminus \left( A \cup B \right)
BA=BA B \setminus A = B \cap A'
AA= A \setminus A = \varnothing
(AB)C=(AC)(BC) \left(A \setminus B \right) \cap C = \left(A \cap C \right) \setminus \left(B \cap C \right)
A=IA A' = I \setminus A

Was these formulas helpful?

Yes No