0 formulas included in custom cheat sheet |
$\text{If } \lim_{x \to a} f(x) = l \text{ and } \lim_{x \to a} g(x) = m \text{ ,then}$
|
$$\lim_{x \to a} ~\left[ f(x) \pm g(x) \right] = l \pm m $$ |
|
$$\lim_{x \to a} ~\left[ f(x) \cdot g(x) \right] = l \cdot m $$ |
|
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{m}$$ |
|
$$\lim_{x \to a} c\cdot f(x) = c \cdot l $$ |
|
$$\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{l} $$ |
|
$$ \lim_{x \to \infty}~\left(1+\frac{1}{n}\right)^n = e $$ |
|
$$ \lim_{x \to \infty}~(1 + n)^{1/n} = e $$ |
|
$$ \lim_{x \to 0}~\frac{\sin x}{x} = 1 $$ |
|
$$ \lim_{x \to 0}~\frac{\tan x}{x} = 1 $$ |
|
$$ \lim_{x \to 0}~\frac{\cos x-1}{x} = 0 $$ |
|
$$ \lim_{x \to a}~\frac{x^n - a^n}{x-a} = n\,a^{n-1} $$ |
Please tell me how can I make this better.