0 formulas included in custom cheat sheet |
$ \mathbb{N} $ : Natural numbers
$ \mathbb{N}_0 $ : Whole numbers
$ \mathbb{Z} $ : Integers
$ \mathbb{Z}^+ $ : Positive integers
$ \mathbb{Z}^- $ : Negative integers
$ \mathbb{Q} $ : Rational numbers
$ \mathbb{C} $ : Complex numbers
Natural numbers (counting numbers )
|
$$ \mathbb{N} = \left\{ 1, 2, 3, \dots \right\}$$ |
Whole numbers ( counting numbers with zero )
|
$$ \mathbb{N}_0 = \left\{0, 1, 2, 3, \dots \right\}$$ |
Integers ( whole numbers and their opposites and zero )
|
$$ \mathbb{Z} = \left\{ \dots , -2, -1, 0, 1, 2, \dots \right\}$$ |
|
$$ \mathbb{Z}^+ = \mathbb{N} = \left\{ 1, 2, \dots \right\}$$ |
|
$$ \mathbb{Z}^- = \left\{ \dots , -3, -2, -1 \right\}$$ |
|
$$ \mathbb{Z} = \mathbb{Z}^- \cup { 0 } \cup \mathbb{Z}$$ |
Irrational numbers: Non repeating and nonterminating integers
Real numbers: Union of rational and irrational numbers
Complex numbers:
|
$$ \mathbb{C} = \left\{ x+iy ~|~ x \in \mathbb{R} ~~ and ~~ y \in \mathbb{R} \right\} $$ |
|
$$ \mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} $$ |
Please tell me how can I make this better.