Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Math formulas: Numbers sets

0 formulas included in custom cheat sheet

Definitions:

N \mathbb{N} : Natural numbers

N0 \mathbb{N}_0 : Whole numbers

Z \mathbb{Z} : Integers

Z+ \mathbb{Z}^+ : Positive integers

Z \mathbb{Z}^- : Negative integers

Q \mathbb{Q} : Rational numbers

C \mathbb{C} : Complex numbers

Formulas:

Natural numbers (counting numbers )

N={1,2,3,} \mathbb{N} = \left\{ 1, 2, 3, \dots \right\}

Whole numbers ( counting numbers with zero )

N0={0,1,2,3,} \mathbb{N}_0 = \left\{0, 1, 2, 3, \dots \right\}

Integers ( whole numbers and their opposites and zero )

Z={,2,1,0,1,2,} \mathbb{Z} = \left\{ \dots , -2, -1, 0, 1, 2, \dots \right\}
Z+=N={1,2,} \mathbb{Z}^+ = \mathbb{N} = \left\{ 1, 2, \dots \right\}
Z={,3,2,1} \mathbb{Z}^- = \left\{ \dots , -3, -2, -1 \right\}
Z=Z0Z \mathbb{Z} = \mathbb{Z}^- \cup { 0 } \cup \mathbb{Z}

Irrational numbers: Non repeating and nonterminating integers

Real numbers: Union of rational and irrational numbers

Complex numbers:

C={x+iy  xR  and  yR} \mathbb{C} = \left\{ x+iy ~|~ x \in \mathbb{R} ~~ and ~~ y \in \mathbb{R} \right\}
NN0ZQRC \mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}

Was these formulas helpful?

Yes No