Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
Notice: Click here to get the most up-to-date list of all formulas for lines in two dimensions..

Math formulas: Lines in two dimensions

0 formulas included in custom cheat sheet

Line forms

Slope y-intercept form:

y=mx+b y = mx+b

Two point form:

yy1=y2y1x2x1(xx1) y - y_1 =\frac{y_2-y_1}{x_2 - x_1} (x - x_1)

Point slope form:

yy1=m(xx1) y - y_1 = m(x - x_1)

Intercept form

xa+yb=1 , (a,b0) \frac{x}{a} + \frac{y}{b} = 1~,~(a,b \ne 0)

Normal form:

xcosΘ+ysinΘ=p x\cdot \cos\Theta + y\cdot \sin\Theta = p

Parametric form:

x=x1+tcosαy=y1+tsinα \begin{aligned} x &= x_1 + t\cdot \cos\alpha \\ y &= y_1 + t\cdot \sin\alpha \\ \end{aligned}

Point direction form:

xx1A=yy1B \frac{x - x_1}{A} = \frac{y - y_1}{B}

where (A,B)(A,B) is the direction of the line and P1(x1,y1) P_1(x_1, y_1) lies on the line.

General form:

Ax+By+C=0 , (A0 or B0) Ax + By + C = 0~,~(A\ne 0 ~\text{or}~B \ne 0)

Distance

The distance from Ax+By+C=0 A\,x + B\,y + C = 0 to P1(x1,y1) P_1(x_1, y_1) is

d=Ax1+By1+CA2+B2 d = \frac{|A\,x_1 + B\,y_1 + C|}{\sqrt{A^2 + B^2}}

Concurrent lines

Three lines

A1x+B1y+C1=0A2x+B2y+C2=0A3x+B3y+C3=0 \begin{aligned} A_1x + B_1y + C_1 &= 0 \\ A_2x + B_2y + C_2 &= 0 \\ A_3x + B_3y + C_3 &= 0 \end{aligned}

are concurrent if and only if:

A1B1C1A2B2C2A3B3C3=0\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \\ \end{vmatrix} = 0

Line segment

A line segment P1P2P_1P_2 can be represented in parametric form by

x=x1+(x2x1)ty=y1+(y2y1)t0t1 \begin{aligned} x &= x_1 + (x_2 - x_1)t \\ y &= y_1 + (y_2 - y_1)t \\ & 0 \leq t \leq 1 \end{aligned}

Two line segments P1P2P_1P_2 and P3P4P_3P_4 intersect if any only if the numbers

s=x2x1y2y1x3x1y3y1x2x1y2y1x3x4y3y4  and  t=x3x1y3y1x3x4y3y4x2x1y2y1x3x4y3y4 s = \frac{ \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix}} { \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_4 & y_3 - y_4 \end{vmatrix}} ~~ \text{and} ~~ t = \frac{ \begin{vmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_4 & y_3 - y_4 \end{vmatrix}} { \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_4 & y_3 - y_4 \end{vmatrix}}

satisfy 0s1 0 \leq s \leq 1 and 0t1 0 \leq t \leq 1 .

Was these formulas helpful?

Yes No