0 formulas included in custom cheat sheet |
Second derivative
|
$$ f'' = \frac{d}{dx} \left(\frac{dy}{dx}\right) - \frac{d^2y}{dx^2} $$ |
Higher-Order derivative
|
$$ f^{(n)} = \left( f^{(n-1)} \right)' $$ |
|
$$ \left(f \, \pm \, g\right)^{(n)} = f^{(n)} \pm ~g^{(n)} $$ |
Leibniz's Formulas
|
$$(f \cdot g)'' = f'' \cdot g + 2 \cdot f'\cdot g' + f \cdot g''$$ |
|
$$(f \cdot g)''' = f''' \cdot g + 3 \cdot f''\cdot g' + 3 \cdot f'\cdot g'' + f \cdot g'''$$ |
|
$$(f \cdot g)^{(n)} = f^{(n)} \cdot g + n \cdot f^{(n-1)}\cdot g' + \frac{n(n-1)}{1\cdot2} \cdot f^{(n-2)} \cdot g'' + \dots + f \cdot g^{(n)}$$ |
|
$$ \left(x^m \right)^{(n)} = \frac{ m! }{(m-n)!} x^{m-n} $$ |
|
$$ \left( x^n \right)^{(n)} = n! $$ |
|
$$ \left( \log_a x \right)^{(n)} = \frac{(-1)^{(n-1)} \cdot (n-1)!}{x^n \cdot \ln a} $$ |
|
$$ (\ln n)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n} $$ |
|
$$ \left( a^x \right)^{(n)} = a^x \cdot \ln^n a $$ |
|
$$ \left( e^x \right)^{(n)} = e^x $$ |
|
$$ \left( a^{m \, x} \right)^{(n)} = m^n \, a^{m \cdot x} \ln^n a $$ |
|
$$ (\sin x)^{(n)} = \sin\left(x + \frac{n\,\pi}{2} \right) $$ |
|
$$ (\cos x)^{(n)} = \cos\left(x + \frac{n\,\pi}{2} \right) $$ |
Please tell me how can I make this better.