Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

# Math formulas:Higher-order Derivatives

 0 formulas included in custom cheat sheet

### Definitions and properties

Second derivative

 $$f'' = \frac{d}{dx} \left(\frac{dy}{dx}\right) - \frac{d^2y}{dx^2}$$

Higher-Order derivative

 $$f^{(n)} = \left( f^{(n-1)} \right)'$$
 $$\left(f \, \pm \, g\right)^{(n)} = f^{(n)} \pm ~g^{(n)}$$

Leibniz's Formulas

 $$(f \cdot g)'' = f'' \cdot g + 2 \cdot f'\cdot g' + f \cdot g''$$
 $$(f \cdot g)''' = f''' \cdot g + 3 \cdot f''\cdot g' + 3 \cdot f'\cdot g'' + f \cdot g'''$$
 $$(f \cdot g)^{(n)} = f^{(n)} \cdot g + n \cdot f^{(n-1)}\cdot g' + \frac{n(n-1)}{1\cdot2} \cdot f^{(n-2)} \cdot g'' + \dots + f \cdot g^{(n)}$$

### Important Formulas

 $$\left(x^m \right)^{(n)} = \frac{ m! }{(m-n)!} x^{m-n}$$
 $$\left( x^n \right)^{(n)} = n!$$
 $$\left( \log_a x \right)^{(n)} = \frac{(-1)^{(n-1)} \cdot (n-1)!}{x^n \cdot \ln a}$$
 $$(\ln n)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n}$$
 $$\left( a^x \right)^{(n)} = a^x \cdot \ln^n a$$
 $$\left( e^x \right)^{(n)} = e^x$$
 $$\left( a^{m \, x} \right)^{(n)} = m^n \, a^{m \cdot x} \ln^n a$$
 $$(\sin x)^{(n)} = \sin\left(x + \frac{n\,\pi}{2} \right)$$
 $$(\cos x)^{(n)} = \cos\left(x + \frac{n\,\pi}{2} \right)$$