Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
2101 | $$ $$ | 1 |
2102 | $$ $$ | 1 |
2103 | $$ $$ | 1 |
2104 | $$ \displaystyle\int {x}^{n}{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 1 |
2105 | $$ $$ | 1 |
2106 | $$ $$ | 1 |
2107 | $$ $$ | 1 |
2108 | $$ $$ | 1 |
2109 | $$ \displaystyle\int {x}^{2}{\cdot}{2}^{-{x}^{2}}\, \mathrm d x $$ | 1 |
2110 | $$ \displaystyle\int \dfrac{1}{\left(2x-7\right){\cdot}\sqrt{\left(x-2\right){\cdot}\left(x-4\right)}}\, \mathrm d x $$ | 1 |
2111 | $$ \displaystyle\int \dfrac{1}{\sqrt{{\mathrm{e}}^{-2x}-9}}\, \mathrm d x $$ | 1 |
2112 | $$ \displaystyle\int -{\left(\cos\left(x\right)\right)}^{2}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 1 |
2113 | $$ \displaystyle\int -{\left(\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
2114 | $$ $$ | 1 |
2115 | $$ $$ | 1 |
2116 | $$ $$ | 1 |
2117 | $$ $$ | 1 |
2118 | $$ \displaystyle\int \dfrac{1+\cos\left(x\right)}{1-\cos\left(x\right)}\, \mathrm d x $$ | 1 |
2119 | $$ \displaystyle\int \sqrt{x}\, \mathrm d x $$ | 1 |
2120 | $$ \displaystyle\int \dfrac{\ln\left({x}^{2}\right)}{x}\, \mathrm d x $$ | 1 |
2121 | $$ \displaystyle\int^{2}_{0} {\pi}{\cdot}{\left(\dfrac{1}{x+1}\right)}^{2}\, \mathrm d x $$ | 1 |
2122 | $$ \int {3}{c}{o}{3}{e}{x}{8}{c}{o}{2}{l}{c}{o}{6} \, d\,x $$ | 1 |
2123 | $$ \displaystyle\int^{1}_{0} \dfrac{\sqrt{1-{x}^{2}}{\cdot}\left(2{x}^{2}+1\right)}{3}\, \mathrm d x $$ | 1 |
2124 | $$ $$ | 1 |
2125 | $$ $$ | 1 |
2126 | $$ $$ | 1 |
2127 | $$ $$ | 1 |
2128 | $$ $$ | 1 |
2129 | $$ \int^{5}_{1} \frac{\sqrt{{{x}^{{2}}-{1}}}}{{x}} \, d\,x $$ | 1 |
2130 | $$ \int^{5}_{1} \frac{\sqrt{{{x}^{{2}}-{1}}}}{{4}}{x} \, d\,x $$ | 1 |
2131 | $$ \int^{5}_{1} \frac{\sqrt{{{x}^{{2}}-{1}}}}{{{4}{x}}} \, d\,x $$ | 1 |
2132 | $$ \displaystyle\int \dfrac{{x}^{2}}{\sqrt{{a}^{2}+{x}^{2}}}\, \mathrm d x $$ | 1 |
2133 | $$ \displaystyle\int \dfrac{1}{\sqrt{{a}^{2}+{x}^{2}}}\, \mathrm d x $$ | 1 |
2134 | $$ \displaystyle\int {x}^{2}{\cdot}{\left(\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
2135 | $$ \displaystyle\int {\mathrm{e}}^{x}{\cdot}\sqrt{{\mathrm{e}}^{x}+4}\, \mathrm d x $$ | 1 |
2136 | $$ \displaystyle\int^{0.69}_{0} {\mathrm{e}}^{x}{\cdot}\sqrt{{\mathrm{e}}^{x}+4}\, \mathrm d x $$ | 1 |
2137 | $$ $$ | 1 |
2138 | $$ $$ | 1 |
2139 | $$ $$ | 1 |
2140 | $$ $$ | 1 |
2141 | $$ $$ | 1 |
2142 | $$ $$ | 1 |
2143 | $$ $$ | 1 |
2144 | $$ $$ | 1 |
2145 | $$ $$ | 1 |
2146 | $$ $$ | 1 |
2147 | $$ $$ | 1 |
2148 | $$ $$ | 1 |
2149 | $$ \displaystyle\int^{2}_{5} \dfrac{5}{2x-0.02}\, \mathrm d x $$ | 1 |
2150 | $$ \int {\left({5}{x}+{3}\right)} \, d\,x $$ | 1 |