Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
2051 | $$ $$ | 1 |
2052 | $$ $$ | 1 |
2053 | $$ $$ | 1 |
2054 | $$ $$ | 1 |
2055 | $$ \displaystyle\int 2{x}^{2}-\dfrac{1}{2}{\cdot}x-15\, \mathrm d x $$ | 1 |
2056 | $$ \displaystyle\int 2{x}^{2}-\dfrac{3}{4}{\cdot}x\, \mathrm d x $$ | 1 |
2057 | $$ \displaystyle\int {x}^{3}-2{x}^{2}+7x+5\, \mathrm d x $$ | 1 |
2058 | $$ \displaystyle\int \dfrac{x+1}{{x}^{3}}\, \mathrm d x $$ | 1 |
2059 | $$ \displaystyle\int \left({x}^{5}+2\right){\cdot}5{x}^{4}\, \mathrm d x $$ | 1 |
2060 | $$ \displaystyle\int 6{x}^{2}{\cdot}{\left(3-2{x}^{3}\right)}^{3}\, \mathrm d x $$ | 1 |
2061 | $$ \displaystyle\int^{2}_{1} {x}^{3}-6{x}^{2}+11x-6\, \mathrm d x $$ | 1 |
2062 | $$ \displaystyle\int^{2}_{1} {x}^{3}-6{x}^{2}+11x-6\, \mathrm d x $$ | 1 |
2063 | $$ \displaystyle\int^{3}_{2} {x}^{3}-6{x}^{2}+11x-6\, \mathrm d x $$ | 1 |
2064 | $$ \displaystyle\int {x}^{3}-6{x}^{2}+11x-6\, \mathrm d x $$ | 1 |
2065 | $$ \displaystyle\int \dfrac{1}{{x}^{3}{\cdot}{\left(\sin\left(2{\cdot}\ln\left(x\right)\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
2066 | $$ \displaystyle\int^{4}_{0} 2x-6\, \mathrm d x $$ | 1 |
2067 | $$ \displaystyle\int^{4}_{0} \sqrt{1+\dfrac{9{x}^{2}{\cdot}\left({x}^{2}+2\right)}{4}}\, \mathrm d x $$ | 1 |
2068 | $$ \displaystyle\int^{5.3392}_{0} \sqrt{{\left(60{\cdot}\sqrt{2}\right)}^{2}+{\left(60{\cdot}\sqrt{2}-32t\right)}^{2}}\, \mathrm d x $$ | 1 |
2069 | $$ \displaystyle\int {\left({x}^{2}+4\right)}^{0.5}\, \mathrm d x $$ | 1 |
2070 | $$ $$ | 1 |
2071 | $$ $$ | 1 |
2072 | $$ $$ | 1 |
2073 | $$ $$ | 1 |
2074 | $$ \displaystyle\int^{e}_{1} \dfrac{1}{x}\, \mathrm d x $$ | 1 |
2075 | $$ \int^{-5}_{5} \sqrt{{25}}-{x}^{{2}} \, d\,x $$ | 1 |
2076 | $$ \displaystyle\int \dfrac{1}{1-x}\, \mathrm d x $$ | 1 |
2077 | $$ \displaystyle\int^{2.71}_{1} \dfrac{1}{x}\, \mathrm d x $$ | 1 |
2078 | $$ \displaystyle\int^{2.718}_{1} \dfrac{1}{x}\, \mathrm d x $$ | 1 |
2079 | $$ \displaystyle\int^{2.7182}_{1} \dfrac{1}{x}\, \mathrm d x $$ | 1 |
2080 | $$ \displaystyle\int^{2.71828}_{1} x\, \mathrm d x $$ | 1 |
2081 | $$ \displaystyle\int^{2.7}_{1} x\, \mathrm d x $$ | 1 |
2082 | $$ \displaystyle\int^{2.71}_{1} x\, \mathrm d x $$ | 1 |
2083 | $$ \displaystyle\int^{2.69}_{1} x\, \mathrm d x $$ | 1 |
2084 | $$ \displaystyle\int^{2.718}_{1} x\, \mathrm d x $$ | 1 |
2085 | $$ $$ | 1 |
2086 | $$ $$ | 1 |
2087 | $$ $$ | 1 |
2088 | $$ $$ | 1 |
2089 | $$ $$ | 1 |
2090 | $$ $$ | 1 |
2091 | $$ $$ | 1 |
2092 | $$ $$ | 1 |
2093 | $$ $$ | 1 |
2094 | $$ $$ | 1 |
2095 | $$ $$ | 1 |
2096 | $$ $$ | 1 |
2097 | $$ $$ | 1 |
2098 | $$ $$ | 1 |
2099 | $$ $$ | 1 |
2100 | $$ $$ | 1 |