Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
2151 | $$ $$ | 1 |
2152 | $$ $$ | 1 |
2153 | $$ $$ | 1 |
2154 | $$ $$ | 1 |
2155 | $$ $$ | 1 |
2156 | $$ $$ | 1 |
2157 | $$ $$ | 1 |
2158 | $$ $$ | 1 |
2159 | $$ \displaystyle\int 4{\cdot}\sqrt{\tan\left(\color{orangered}{\square}\right)}\, \mathrm d x $$ | 1 |
2160 | $$ $$ | 1 |
2161 | $$ $$ | 1 |
2162 | $$ $$ | 1 |
2163 | $$ $$ | 1 |
2164 | $$ \displaystyle\int^{1}_{0} 3{x}^{2}{\cdot}{\mathrm{e}}^{-x}\, \mathrm d x $$ | 1 |
2165 | $$ \displaystyle\int \dfrac{7{\cdot}\cos\left(6x\right)}{4{\cdot}{\left(\sin\left(6x\right)+4\right)}^{3}}\, \mathrm d x $$ | 1 |
2166 | $$ \displaystyle\int \dfrac{1}{{\left({x}^{2}+4\right)}^{\frac{3}{2}}}\, \mathrm d x $$ | 1 |
2167 | $$ \displaystyle\int \dfrac{-2}{\sqrt{-{x}^{2}-5x+1}}\, \mathrm d x $$ | 1 |
2168 | $$ \displaystyle\int 6{x}^{2}-13x+6\, \mathrm d x $$ | 1 |
2169 | $$ \displaystyle\int \dfrac{\sin\left(2x\right)-\cos\left(2x\right)}{{\left(\sin\left(2x\right)+\cos\left(2x\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
2170 | $$ \displaystyle\int \mathrm{e}^{x}{\cdot}\sqrt{\mathrm{e}^{x}+4}\, \mathrm d x $$ | 1 |
2171 | $$ \displaystyle\int \mathrm{e}^{x}{\cdot}\sqrt{\mathrm{e}^{x}+4}\, \mathrm d x $$ | 1 |
2172 | $$ \displaystyle\int \sin\left(2x\right)\, \mathrm d x $$ | 1 |
2173 | $$ \displaystyle\int \left(2x-3\right){\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 1 |
2174 | $$ \displaystyle\int {x}^{10}-7{x}^{9}+8{x}^{8}\, \mathrm d x $$ | 1 |
2175 | $$ \displaystyle\int \sqrt{3-2}{\cdot}x{x}^{2}\, \mathrm d x $$ | 1 |
2176 | $$ $$ | 1 |
2177 | $$ $$ | 1 |
2178 | $$ $$ | 1 |
2179 | $$ $$ | 1 |
2180 | $$ $$ | 1 |
2181 | $$ $$ | 1 |
2182 | $$ $$ | 1 |
2183 | $$ $$ | 1 |
2184 | $$ $$ | 1 |
2185 | $$ \displaystyle\int 0.1\, \mathrm d x $$ | 1 |
2186 | $$ \displaystyle\int 0\, \mathrm d x $$ | 1 |
2187 | $$ \displaystyle\int \sqrt{\dfrac{{\left(x+1\right)}^{4}+4}{{\left(x+1\right)}^{4}}}\, \mathrm d x $$ | 1 |
2188 | $$ \int {\left({2}{x}+{1}\right)} \, d\,x $$ | 1 |
2189 | $$ \displaystyle\int^{1}_{0} {\mathrm{e}}^{x}{\cdot}{x}^{2}\, \mathrm d x $$ | 1 |
2190 | $$ $$ | 1 |
2191 | $$ $$ | 1 |
2192 | $$ $$ | 1 |
2193 | $$ \displaystyle\int^{3}_{----1} x\, \mathrm d x $$ | 1 |
2194 | $$ \displaystyle\int \dfrac{24}{49{\cdot}\left(2x+1\right)}\, \mathrm d x $$ | 1 |
2195 | $$ \displaystyle\int \left(1-2x\right){\cdot}\sin\left(\dfrac{2}{3}\right){\cdot}x\, \mathrm d x $$ | 1 |
2196 | $$ \displaystyle\int \sin\left(5x\right){\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 1 |
2197 | $$ \displaystyle\int \dfrac{\sqrt{x-1}}{{x}^{2}}\, \mathrm d x $$ | 1 |
2198 | $$ \displaystyle\int {4}^{x}{\cdot}\sin\left({4}^{x}\right)\, \mathrm d x $$ | 1 |
2199 | $$ $$ | 1 |
2200 | $$ $$ | 1 |