Integrals
(the database of solved problems)
All the problems and solutions shown below were generated using the Integral Calculator.
| ID |
Problem |
Count |
| 2001 | $$ \displaystyle\int^{1}_{0} \dfrac{\left(a+{x}^{2}\right){\cdot}{\left(\ln\left(\dfrac{1}{x}\right)\right)}^{4}}{1+{x}^{2}}\, \mathrm d x $$ | 1 |
| 2002 | $$ \displaystyle\int {\left(1+x\right)}^{1000}\, \mathrm d x $$ | 1 |
| 2003 | $$ \displaystyle\int {x}^{5}{\cdot}\sqrt{{x}^{3}+1}\, \mathrm d x $$ | 1 |
| 2004 | $$ $$ | 1 |
| 2005 | $$ $$ | 1 |
| 2006 | $$ $$ | 1 |
| 2007 | $$ $$ | 1 |
| 2008 | $$ $$ | 1 |
| 2009 | $$ \displaystyle\int {\left(\cos\left(2x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
| 2010 | $$ $$ | 1 |
| 2011 | $$ $$ | 1 |
| 2012 | $$ \displaystyle\int {x}^{2}{\cdot}\mathrm{e}^{-a{x}^{2}}\, \mathrm d x $$ | 1 |
| 2013 | $$ \displaystyle\int \dfrac{{x}^{2}}{{\left(1-{x}^{2}\right)}^{2}}\, \mathrm d x $$ | 1 |
| 2014 | $$ \displaystyle\int \dfrac{3}{{t}^{2}+3}\, \mathrm d x $$ | 1 |
| 2015 | $$ \displaystyle\int^{3}_{0} \dfrac{3}{{t}^{2}+3}\, \mathrm d x $$ | 1 |
| 2016 | $$ $$ | 1 |
| 2017 | $$ $$ | 1 |
| 2018 | $$ $$ | 1 |
| 2019 | $$ $$ | 1 |
| 2020 | $$ $$ | 1 |
| 2021 | $$ \displaystyle\int 5{\mathrm{e}}^{x}\, \mathrm d x $$ | 1 |
| 2022 | $$ \displaystyle\int {x}^{3}{\cdot}\left(5x-8\right)\, \mathrm d x $$ | 1 |
| 2023 | $$ $$ | 1 |
| 2024 | $$ \displaystyle\int -2{\cdot}\sec\left(2x\right){\cdot}\tan\left(2x\right)\, \mathrm d x $$ | 1 |
| 2025 | $$ \displaystyle\int x{\cdot}\sqrt{x+6}\, \mathrm d x $$ | 1 |
| 2026 | $$ \displaystyle\int \dfrac{\cos\left(x\right)}{\sqrt{{x}^{2}+1}}\, \mathrm d x $$ | 1 |
| 2027 | $$ \displaystyle\int^{10}_{0} \dfrac{\cos\left(x\right)}{s}{\cdot}q{\cdot}\sqrt{t}{\cdot}\left({x}^{2}+1\right)\, \mathrm d x $$ | 1 |
| 2028 | $$ \displaystyle\int^{10}_{0} \dfrac{\cos\left(x\right)}{s}{\cdot}qsq{\cdot}\sqrt{t}{\cdot}t{\cdot}\left({x}^{2}+1\right)\, \mathrm d x $$ | 1 |
| 2029 | $$ \int {\sin{{x}}} \, d\,x $$ | 1 |
| 2030 | $$ \int^{3}_{1} {\sin{{\left({x}\right)}}} \, d\,x $$ | 1 |
| 2031 | $$ \displaystyle\int i{\cdot}nt{\cdot}3x\, \mathrm d x $$ | 1 |
| 2032 | $$ \displaystyle\int \dfrac{1}{x{\cdot}\sqrt{4{\pi}}}{\cdot}\mathrm{e}^{\dfrac{-{\left(\ln\left(x-5\right)\right)}^{2}}{4}}\, \mathrm d x $$ | 1 |
| 2033 | $$ \displaystyle\int \mathrm{sech}\left(x\right){\cdot}\mathrm{sech}\left(t-x\right)\, \mathrm d x $$ | 1 |
| 2034 | $$ \displaystyle\int \mathrm{sech}\left(x\right){\cdot}\mathrm{e}^{2{\pi}{\cdot}i{\cdot}xt}\, \mathrm d x $$ | 1 |
| 2035 | $$ \displaystyle\int \mathrm{sech}\left(x\right){\cdot}\mathrm{e}^{2{\pi}{\cdot}i{\cdot}xt}\, \mathrm d x $$ | 1 |
| 2036 | $$ \displaystyle\int \dfrac{2x+13}{2xx+1}\, \mathrm d x $$ | 1 |
| 2037 | $$ \displaystyle\int \sqrt{x+11}\, \mathrm d x $$ | 1 |
| 2038 | $$ \displaystyle\int^{6}_{0} 4-x\, \mathrm d x $$ | 1 |
| 2039 | $$ \displaystyle\int \cos\left(x\right)\, \mathrm d x $$ | 1 |
| 2040 | $$ $$ | 1 |
| 2041 | $$ $$ | 1 |
| 2042 | $$ $$ | 1 |
| 2043 | $$ $$ | 1 |
| 2044 | $$ $$ | 1 |
| 2045 | $$ $$ | 1 |
| 2046 | $$ $$ | 1 |
| 2047 | $$ $$ | 1 |
| 2048 | $$ $$ | 1 |
| 2049 | $$ $$ | 1 |
| 2050 | $$ $$ | 1 |