Ellipse – Solved Problems Database
All the problems and solutions shown below were generated using the Ellipse Calculator.
ID |
Problem |
Count |
301 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 20x^2 + 25y^2 = 1 $$ | 2 |
302 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 8x^2 + \frac{ 37 }{ 10 }y^2 = 1 $$ | 2 |
303 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 1 } + \dfrac{ \left( y + 1 \right)^2}{ 81 } = 1 $$ | 2 |
304 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ x^2 + 0.9573y^2 = 1 $$ | 2 |
305 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 15 \right)^2}{ 2 } + \dfrac{ \left( y + 2 \right)^2}{ 2 } = 1 $$ | 2 |
306 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1 } + \dfrac{ y^2}{ 4 } = 1 $$ | 2 |
307 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 5 } + \dfrac{ y^2}{ 3 } = 1 $$ | 2 |
308 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 64 } + \dfrac{ y^2}{ 100 } = 1 $$ | 2 |
309 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ \frac{ 191 }{ 2 } } + \dfrac{ \left( y - 1 \right)^2}{ 75 } = 1 $$ | 2 |
310 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 10 } + \dfrac{ \left( y + 2 \right)^2}{ 4 } = 1 $$ | 2 |
311 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 154 } + \dfrac{ y^2}{ 62 } = 1 $$ | 2 |
312 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 3 } = 1 $$ | 2 |
313 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 2 |
314 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 49 } = 1 $$ | 2 |
315 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 780 } + \dfrac{ y^2}{ 450 } = 1 $$ | 2 |
316 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 59 } + \dfrac{ y^2}{ 64 } = 1 $$ | 2 |
317 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 25 } + \dfrac{ \left( y + 4 \right)^2}{ 16 } = 1 $$ | 1 |
318 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 1 } + \dfrac{ \left( y - 1 \right)^2}{ 4 } = 1 $$ | 1 |
319 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 81 } + \dfrac{ \left( y - 7 \right)^2}{ 9 } = 1 $$ | 1 |
320 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y - 1 \right)^2}{ 36 } = 1 $$ | 1 |
321 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ \left( y + 5 \right)^2}{ 1 } = 1 $$ | 1 |
322 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 3 } + \dfrac{ \left( y + 2 \right)^2}{ 5 } = 1 $$ | 1 |
323 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 43 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 1 |
324 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 6 \right)^2}{ 49 } + \dfrac{ \left( y - 4 \right)^2}{ 16 } = 1 $$ | 1 |
325 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y + 4 \right)^2}{ 25 } = 1 $$ | 1 |
326 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 20 } + \dfrac{ y^2}{ 8 } = 1 $$ | 1 |
327 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 22 } = 1 $$ | 1 |
328 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 32 }{ 5 } \right)^2}{ \frac{ 1 }{ 2 } } + \dfrac{ \left( y - \frac{ 11 }{ 5 } \right)^2}{ \frac{ 1 }{ 5 } } = 1 $$ | 1 |
329 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 601 }{ 100 } \right)^2}{ \frac{ 49 }{ 100 } } + \dfrac{ \left( y - \frac{ 497 }{ 100 } \right)^2}{ \frac{ 6 }{ 25 } } = 1 $$ | 1 |
330 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 81 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
331 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 16 } + \dfrac{ \left( y - 6 \right)^2}{ 98 } = 1 $$ | 1 |
332 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 100 } + \dfrac{ \left( y - 5 \right)^2}{ 1 } = 1 $$ | 1 |
333 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 6 } = 1 $$ | 1 |
334 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 225 } + \dfrac{ \left( y + 3 \right)^2}{ 144 } = 1 $$ | 1 |
335 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ \left( y - 2 \right)^2}{ 49 } = 1 $$ | 1 |
336 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 6 \right)^2}{ 49 } + \dfrac{ \left( y + 8 \right)^2}{ 64 } = 1 $$ | 1 |
337 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 4 } + \dfrac{ \left( y + 5 \right)^2}{ 9 } = 1 $$ | 1 |
338 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 1 }{ 4 } } + \dfrac{ y^2}{ \frac{ 9 }{ 4 } } = 1 $$ | 1 |
339 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 1 |
340 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 1 |
341 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 9 } + \dfrac{ \left( y + 5 \right)^2}{ 34 } = 1 $$ | 1 |
342 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 4 } + \dfrac{ \left( y - 4 \right)^2}{ 9 } = 1 $$ | 1 |
343 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 16 } + \dfrac{ \left( y + 3 \right)^2}{ 25 } = 1 $$ | 1 |
344 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |
345 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 1 |
346 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 1664 } + \dfrac{ \left( y + 4 \right)^2}{ 25 } = 1 $$ | 1 |
347 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 64 } + \dfrac{ \left( y + 4 \right)^2}{ 25 } = 1 $$ | 1 |
348 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 6 \right)^2}{ 9 } + \dfrac{ \left( y + 3 \right)^2}{ 25 } = 1 $$ | 1 |
349 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 7 \right)^2}{ 4 } + \dfrac{ \left( y + 4 \right)^2}{ 16 } = 1 $$ | 1 |
350 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 16 } + \dfrac{ \left( y + 4 \right)^2}{ 4 } = 1 $$ | 1 |