Ellipse – Solved Problems Database
All the problems and solutions shown below were generated using the Ellipse Calculator.
ID |
Problem |
Count |
351 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y + 1 \right)^2}{ 1 } = 1 $$ | 1 |
352 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 12x^2 + 3y^2 = 48 $$ | 1 |
353 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 36 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 1 |
354 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 5 \right)^2}{ 64 } = 1 $$ | 1 |
355 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 81 }{ 4 } } + \dfrac{ y^2}{ 9 } = 1 $$ | 1 |
356 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 1 |
357 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 16 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |
358 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 43 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 1 |
359 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ y^2}{ 25 } = 1 $$ | 1 |
360 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 18 } + \dfrac{ y^2}{ \frac{ 12 }{ 5 } } = 1 $$ | 1 |
361 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 25 } + \dfrac{ \left( y + 3 \right)^2}{ 36 } = 1 $$ | 1 |
362 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1.5384 } + \dfrac{ y^2}{ 0.5541 } = 1 $$ | 1 |
363 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 1 |
364 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ \frac{ 1 }{ 2 } } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 1 |
365 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 7 \right)^2}{ 5.6169 } + \dfrac{ \left( y - \frac{ 27 }{ 100 } \right)^2}{ \frac{ 961 }{ 100 } } = 1 $$ | 1 |
366 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y - 1 \right)^2}{ 36 } = 1 $$ | 1 |
367 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
368 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 4 } + \dfrac{ \left( y - 6 \right)^2}{ 25 } = 1 $$ | 1 |
369 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 1 } = 1 $$ | 1 |
370 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 1 |
371 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 5 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
372 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 64 } + \dfrac{ \left( y + 4 \right)^2}{ 100 } = 1 $$ | 1 |
373 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1.6143 } + \dfrac{ y^2}{ 0.4317 } = 1 $$ | 1 |
374 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ \left( y + 5 \right)^2}{ 1 } = 1 $$ | 1 |
375 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 4 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 1 |
376 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 15 } + \dfrac{ \left( y - 8 \right)^2}{ 10 } = 1 $$ | 1 |
377 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 225 } + \dfrac{ \left( y + 3 \right)^2}{ 144 } = 1 $$ | 1 |
378 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 0.2697 } + \dfrac{ y^2}{ \frac{ 51 }{ 250 } } = 1 $$ | 1 |
379 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 36 } + \dfrac{ \left( y + 6 \right)^2}{ 100 } = 1 $$ | 1 |
380 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 10 } + \dfrac{ \left( y - 8 \right)^2}{ 15 } = 1 $$ | 1 |
381 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 36 } + \dfrac{ \left( y - 4 \right)^2}{ 34 } = 1 $$ | 1 |
382 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 36 } + \dfrac{ \left( y - 4 \right)^2}{ 32 } = 1 $$ | 1 |
383 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 5 } + \dfrac{ \left( y - 3 \right)^2}{ 4 } = 1 $$ | 1 |
384 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 1 |
385 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 60 } = 1 $$ | 1 |
386 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 36 } = 1 $$ | 1 |
387 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 1 } + \dfrac{ \left( y + 3 \right)^2}{ 25 } = 1 $$ | 1 |
388 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 4 } = 1 $$ | 1 |
389 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 36 } + \dfrac{ y^2}{ 49 } = 1 $$ | 1 |
390 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 64 } = 1 $$ | 1 |
391 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 1 |
392 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 1 |
393 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 68 } = 1 $$ | 1 |
394 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 1 |
395 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 9 } + \dfrac{ \left( y + 5 \right)^2}{ 34 } = 1 $$ | 1 |
396 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 15 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
397 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 8 \right)^2}{ 1 } + \dfrac{ \left( y + 2 \right)^2}{ 49 } = 1 $$ | 1 |
398 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 15 } = 1 $$ | 1 |
399 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 30 } = 1 $$ | 1 |
400 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |