Ellipse – Solved Problems Database
All the problems and solutions shown below were generated using the Ellipse Calculator.
ID |
Problem |
Count |
351 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 64 } + \dfrac{ \left( y + 4 \right)^2}{ 9 } = 1 $$ | 1 |
352 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 4 } + \dfrac{ \left( y + 5 \right)^2}{ 25 } = 1 $$ | 1 |
353 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |
354 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
355 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 16 } + \dfrac{ \left( y - 5 \right)^2}{ 4 } = 1 $$ | 1 |
356 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 16 } + \dfrac{ \left( y - 6 \right)^2}{ 4 } = 1 $$ | 1 |
357 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 12 \right)^2}{ 100 } + \dfrac{ y^2}{ 50 } = 1 $$ | 1 |
358 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 9 \left( x - 3 \right)^2}{ 1 } + \dfrac{ 4 \left( y + 5 \right)^2}{ 1 } = 1 $$ | 1 |
359 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 7 \right)^2}{ 4 } + \dfrac{ \left( y + 3 \right)^2}{ 36 } = 1 $$ | 1 |
360 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 81 } + \dfrac{ y^2}{ 100 } = 1 $$ | 1 |
361 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 1 |
362 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 16 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 1 |
363 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 100 } = 1 $$ | 1 |
364 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
365 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 1 } + \dfrac{ \left( y + 2 \right)^2}{ 4 } = 1 $$ | 1 |
366 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 8 } + \dfrac{ y^2}{ 5 } = 1 $$ | 1 |
367 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 8 } + \dfrac{ y^2}{ 6 } = 1 $$ | 1 |
368 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 1 |
369 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 4 } + \dfrac{ \left( y - 18 \right)^2}{ 9 } = 1 $$ | 1 |
370 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 100 } + \dfrac{ \left( y - 10 \right)^2}{ 169 } = 1 $$ | 1 |
371 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 25 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 1 |
372 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 1 |
373 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 4 } = 1 $$ | 1 |
374 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 36 } + \dfrac{ y^2}{ 49 } = 1 $$ | 1 |
375 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 1 |
376 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 16 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |
377 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 1 |
378 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y - 6 \right)^2}{ 64 } = 1 $$ | 1 |
379 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 1 |
380 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 5 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
381 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 1 |
382 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ \left( y + 2 \right)^2}{ 100 } = 1 $$ | 1 |
383 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 36 } + \dfrac{ \left( y - 4 \right)^2}{ 4 } = 1 $$ | 1 |
384 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 30 } + \dfrac{ y^2}{ 15 } = 1 $$ | 1 |
385 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
386 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 1 |
387 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 25x^2 + 16y^2 = 156 $$ | 1 |
388 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 100 } + \dfrac{ \left( y - 3 \right)^2}{ 36 } = 1 $$ | 1 |
389 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 4 } + \dfrac{ \left( y - 6 \right)^2}{ 25 } = 1 $$ | 1 |
390 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 49 } = 1 $$ | 1 |
391 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 4x^2 + y^2 = 1 $$ | 1 |
392 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 406 }{ 125 } } + \dfrac{ y^2}{ \frac{ 463 }{ 200 } } = 1 $$ | 1 |
393 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 36 } + \dfrac{ \left( y + 6 \right)^2}{ 100 } = 1 $$ | 1 |
394 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
395 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 25 } = 1 $$ | 1 |
396 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 5 } + \dfrac{ \left( y - 5 \right)^2}{ 6 } = 1 $$ | 1 |
397 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 25 } + \dfrac{ \left( y - 5 \right)^2}{ 36 } = 1 $$ | 1 |
398 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y - 7 \right)^2}{ 36 } = 1 $$ | 1 |
399 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 9 } = 1 $$ | 1 |
400 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ y^2}{ 9 } = 1 $$ | 1 |