Ellipse – Solved Problems Database
All the problems and solutions shown below were generated using the Ellipse Calculator.
ID |
Problem |
Count |
551 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 6x^2 + 2y^2 = 1 $$ | 1 |
552 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 1 |
553 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 1 |
554 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ \frac{ 1 }{ 2 } } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 1 |
555 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 7 \right)^2}{ 5.6169 } + \dfrac{ \left( y - \frac{ 27 }{ 100 } \right)^2}{ \frac{ 961 }{ 100 } } = 1 $$ | 1 |
556 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 11 }{ 10 } } + \dfrac{ \left( y + \frac{ 13 }{ 2 } \right)^2}{ \frac{ 7 }{ 2 } } = 1 $$ | 1 |
557 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1 } + \dfrac{ \left( y + \frac{ 13 }{ 2 } \right)^2}{ 2 } = 1 $$ | 1 |
558 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1 } + \dfrac{ y^2}{ 40 } = 1 $$ | 1 |
559 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 8 } = 1 $$ | 1 |
560 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 9 } = 1 $$ | 1 |
561 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 1 |
562 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 9 \left( x - 1 \right)^2}{ 1 } + \dfrac{ 25 \left( y + 2 \right)^2}{ 1 } = 1 $$ | 1 |
563 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 18 }{ 5 } } + \dfrac{ y^2}{ \frac{ 9 }{ 2 } } = 1 $$ | 1 |
564 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 5 } + \dfrac{ \left( y + 1 \right)^2}{ 3 } = 1 $$ | 1 |
565 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1618 } + \dfrac{ y^2}{ 1000 } = 1 $$ | 1 |
566 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 36 } + \dfrac{ \left( y - 4 \right)^2}{ 34 } = 1 $$ | 1 |
567 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 36 } + \dfrac{ \left( y - 4 \right)^2}{ 32 } = 1 $$ | 1 |
568 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 1 |
569 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 81 } = 1 $$ | 1 |
570 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 4x^2 + y^2 = 16 $$ | 1 |
571 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 20 \right)^2}{ 225 } + \dfrac{ \left( y - 20 \right)^2}{ 400 } = 1 $$ | 1 |
572 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 1 |
573 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |
574 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 16 } = 1 $$ | 1 |
575 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 7 } + \dfrac{ y^2}{ 9 } = 1 $$ | 1 |
576 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - \frac{ 26 }{ 5 } \right)^2}{ \frac{ 1 }{ 200 } } + \dfrac{ \left( y - \frac{ 13 }{ 10 } \right)^2}{ \frac{ 1 }{ 10 } } = 1 $$ | 1 |
577 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ y^2}{ 1 } = 1 $$ | 1 |
578 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 15 \right)^2}{ 2 } + \dfrac{ \left( y - 2 \right)^2}{ 2 } = 1 $$ | 1 |
579 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 15 \right)^2}{ 2 } + \dfrac{ \left( y + 2 \right)^2}{ 2 } = 1 $$ | 1 |
580 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 1 } = 1 $$ | 1 |
581 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 4 \left( x + 3 \right)^2}{ 7 } + \dfrac{ 9 \left( y - 2 \right)^2}{ 11 } = 1 $$ | 1 |
582 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 10 } + \dfrac{ y^2}{ 20 } = 1 $$ | 1 |
583 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 18 } + \dfrac{ y^2}{ 6 } = 1 $$ | 1 |
584 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 1 } + \dfrac{ y^2}{ 1 } = 1 $$ | 1 |
585 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 64 } + \dfrac{ \left( y + 4 \right)^2}{ 100 } = 1 $$ | 1 |