Ellipse – Solved Problems Database
All the problems and solutions shown below were generated using the Ellipse Calculator.
ID |
Problem |
Count |
251 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 49 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 2 |
252 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 49 } = 1 $$ | 2 |
253 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 49 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 2 |
254 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 10 \right)^2}{ 121 } + \dfrac{ \left( y + 3 \right)^2}{ 49 } = 1 $$ | 2 |
255 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ \left( y + 1 \right)^2}{ 16 } = 1 $$ | 2 |
256 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 16 } + \dfrac{ \left( y + 5 \right)^2}{ 9 } = 1 $$ | 2 |
257 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 81 } + \dfrac{ \left( y + 9 \right)^2}{ 16 } = 1 $$ | 2 |
258 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 64 } + \dfrac{ \left( y - 1 \right)^2}{ 49 } = 1 $$ | 2 |
259 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 25 } + \dfrac{ \left( y + 4 \right)^2}{ 9 } = 1 $$ | 2 |
260 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 25 } + \dfrac{ \left( y + 1 \right)^2}{ 4 } = 1 $$ | 2 |
261 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 25 } = 1 $$ | 2 |
262 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 2 \left( x + 2 \right)^2}{ 2 } + \dfrac{ 2 \left( y + 2 \right)^2}{ 2 } = 1 $$ | 2 |
263 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 2 |
264 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 2 |
265 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 36 } = 1 $$ | 2 |
266 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 36 } = 1 $$ | 2 |
267 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 8 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 36 } = 1 $$ | 2 |
268 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 100x^2 + 36y^2 = 3600 $$ | 2 |
269 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 25 } = 1 $$ | 2 |
270 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 625 } + \dfrac{ y^2}{ 100 } = 1 $$ | 2 |
271 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ y^2}{ 625 } = 1 $$ | 2 |
272 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 4 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 2 |
273 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 25 \left( x - 2 \right)^2}{ 1031 } + \dfrac{ 9 \left( y + 4 \right)^2}{ 1031 } = 1 $$ | 2 |
274 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 36 } + \dfrac{ \left( y + 1 \right)^2}{ 9 } = 1 $$ | 2 |
275 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 44 } + \dfrac{ \left( y - 2 \right)^2}{ 18 } = 1 $$ | 2 |
276 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 144 } + \dfrac{ \left( y - 4 \right)^2}{ 1 } = 1 $$ | 2 |
277 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 2 |
278 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 21 \right)^2}{ 1 } + \dfrac{ \left( y - 12 \right)^2}{ 11 } = 1 $$ | 2 |
279 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 81 } + \dfrac{ \left( y + 6 \right)^2}{ 49 } = 1 $$ | 2 |
280 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 9 } + \dfrac{ \left( y + 4 \right)^2}{ 4 } = 1 $$ | 2 |
281 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 100 } + \dfrac{ y^2}{ \frac{ 121 }{ 4 } } = 1 $$ | 2 |
282 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 10 } + \dfrac{ \left( y + 8 \right)^2}{ 15 } = 1 $$ | 2 |
283 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 2 |
284 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 2 |
285 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ \frac{ 1 }{ 2 } } + \dfrac{ \left( y - 2 \right)^2}{ 4 } = 1 $$ | 2 |
286 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ \frac{ 1 }{ 10 } } + \dfrac{ \left( y + 1 \right)^2}{ \frac{ 1 }{ 5 } } = 1 $$ | 2 |
287 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 8640.632 } + \dfrac{ y^2}{ 8637.8436 } = 1 $$ | 2 |
288 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 3 } = 1 $$ | 2 |
289 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 9 \left( x - 1 \right)^2}{ 225 } + \dfrac{ 25 \left( y + 2 \right)^2}{ 225 } = 1 $$ | 2 |
290 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 3x^2 + 4y^2 = 1 $$ | 2 |
291 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ y^2}{ 1 } = 1 $$ | 2 |
292 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y + 1 \right)^2}{ 3 } = 1 $$ | 2 |
293 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + \frac{ 1 }{ 5 } \right)^2}{ 17.1395 } + \dfrac{ \left( y + \frac{ 1 }{ 10 } \right)^2}{ 7.3495 } = 1 $$ | 2 |
294 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 1 } = 1 $$ | 2 |
295 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 25 } + \dfrac{ \left( y - 4 \right)^2}{ 4 } = 1 $$ | 2 |
296 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 64 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 2 |
297 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 10 \right)^2}{ 1600 } + \dfrac{ \left( y - 20 \right)^2}{ 400 } = 1 $$ | 2 |
298 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 15 \right)^2}{ 3600 } + \dfrac{ \left( y - 30 \right)^2}{ 900 } = 1 $$ | 2 |
299 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 40 \right)^2}{ 900 } + \dfrac{ \left( y - 40 \right)^2}{ 1600 } = 1 $$ | 2 |
300 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 5 }{ 2 } } + \dfrac{ y^2}{ 2 } = 1 $$ | 2 |