Ellipse – Solved Problems Database
All the problems and solutions shown below were generated using the Ellipse Calculator.
ID |
Problem |
Count |
451 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 1 |
452 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 14 } = 1 $$ | 1 |
453 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 7 \right)^2}{ 64 } + \dfrac{ y^2}{ 81 } = 1 $$ | 1 |
454 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 81 } + \dfrac{ y^2}{ 64 } = 1 $$ | 1 |
455 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 16 } = 1 $$ | 1 |
456 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
457 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 16 } + \dfrac{ \left( y - 1 \right)^2}{ 25 } = 1 $$ | 1 |
458 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y - 5 \right)^2}{ 4 } = 1 $$ | 1 |
459 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 25 } + \dfrac{ \left( y + 2 \right)^2}{ 9 } = 1 $$ | 1 |
460 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 8 \right)^2}{ 1 } + \dfrac{ \left( y - 3 \right)^2}{ 49 } = 1 $$ | 1 |
461 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 7 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 9 } = 1 $$ | 1 |
462 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 25 \right)^2}{ 16 } + \dfrac{ \left( y - 9 \right)^2}{ 9 } = 1 $$ | 1 |
463 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 25 \right)^2}{ 1 } + \dfrac{ \left( y - 9 \right)^2}{ 9 } = 1 $$ | 1 |
464 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 1 } = 1 $$ | 1 |
465 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 54 } + \dfrac{ y^2}{ 36 } = 1 $$ | 1 |
466 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 10 } = 1 $$ | 1 |
467 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 30 } = 1 $$ | 1 |
468 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 91 } + \dfrac{ y^2}{ 100 } = 1 $$ | 1 |
469 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 20 } + \dfrac{ y^2}{ 69 } = 1 $$ | 1 |
470 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 10 \right)^2}{ 81 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
471 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 10 \right)^2}{ 25 } + \dfrac{ y^2}{ 64 } = 1 $$ | 1 |
472 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ 4 \left( x + 1 \right)^2}{ \frac{ 3 }{ 2 } } + \dfrac{ \left( y - 2 \right)^2}{ 3 } = 1 $$ | 1 |
473 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y - 5 \right)^2}{ 64 } = 1 $$ | 1 |
474 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 40 } = 1 $$ | 1 |
475 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 34 } = 1 $$ | 1 |
476 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 58 } + \dfrac{ y^2}{ 228 } = 1 $$ | 1 |
477 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 327 } + \dfrac{ y^2}{ 160 } = 1 $$ | 1 |
478 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y + 1 \right)^2}{ 1 } = 1 $$ | 1 |
479 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 7 } + \dfrac{ \left( y + 2 \right)^2}{ 3 } = 1 $$ | 1 |
480 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 36 } + \dfrac{ \left( y + 6 \right)^2}{ 4 } = 1 $$ | 1 |
481 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 4 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
482 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 18 } + \dfrac{ y^2}{ \frac{ 12 }{ 5 } } = 1 $$ | 1 |
483 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 5 } + \dfrac{ y^2}{ 2 } = 1 $$ | 1 |
484 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 1 } = 1 $$ | 1 |
485 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 144x^2 + y^2 = 144 $$ | 1 |
486 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 4 } + \dfrac{ y^2}{ 2 } = 1 $$ | 1 |
487 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 64 } + \dfrac{ \left( y + 4 \right)^2}{ 25 } = 1 $$ | 1 |
488 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 5 \right)^2}{ 81 } + \dfrac{ \left( y - 1 \right)^2}{ 144 } = 1 $$ | 1 |
489 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ x^2 + 2y^2 = 1 $$ | 1 |
490 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 9 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
491 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 25 } + \dfrac{ \left( y + 3 \right)^2}{ 36 } = 1 $$ | 1 |
492 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 1 } + \dfrac{ \left( y + 3 \right)^2}{ 25 } = 1 $$ | 1 |
493 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 8 \right)^2}{ 1 } + \dfrac{ \left( y + 2 \right)^2}{ 49 } = 1 $$ | 1 |
494 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 4 } + \dfrac{ y^2}{ 1 } = 1 $$ | 1 |
495 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1.5384 } + \dfrac{ y^2}{ 0.5541 } = 1 $$ | 1 |
496 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 1.6143 } + \dfrac{ y^2}{ 0.4317 } = 1 $$ | 1 |
497 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 0.2697 } + \dfrac{ y^2}{ \frac{ 51 }{ 250 } } = 1 $$ | 1 |
498 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 36 } + \dfrac{ \left( y - 2 \right)^2}{ 16 } = 1 $$ | 1 |
499 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 16 } + \dfrac{ \left( y - 2 \right)^2}{ 36 } = 1 $$ | 1 |
500 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 36 } + \dfrac{ \left( y + 1 \right)^2}{ 1 } = 1 $$ | 1 |