Ellipse – Solved Problems Database
All the problems and solutions shown below were generated using the Ellipse Calculator.
ID |
Problem |
Count |
501 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 9 \right)^2}{ 16 } + \dfrac{ \left( y + 1 \right)^2}{ 13 } = 1 $$ | 1 |
502 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 1 } + \dfrac{ \left( y + 4 \right)^2}{ 25 } = 1 $$ | 1 |
503 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 28 } + \dfrac{ y^2}{ 22 } = 1 $$ | 1 |
504 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 81 }{ 4 } } + \dfrac{ y^2}{ 9 } = 1 $$ | 1 |
505 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ \left( y - 5 \right)^2}{ 45 } = 1 $$ | 1 |
506 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ \left( y - 5 \right)^2}{ 36 } = 1 $$ | 1 |
507 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 36 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 1 |
508 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 45 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 1 |
509 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 49 } = 1 $$ | 1 |
510 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 144 } + \dfrac{ y^2}{ 196 } = 1 $$ | 1 |
511 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y + 5 \right)^2}{ 25 } = 1 $$ | 1 |
512 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y - 2 \right)^2}{ 64 } = 1 $$ | 1 |
513 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 9 } + \dfrac{ \left( y - 1 \right)^2}{ 25 } = 1 $$ | 1 |
514 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 12x^2 + 3y^2 = 48 $$ | 1 |
515 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 4 }{ 3 } } + \dfrac{ y^2}{ \frac{ 3 }{ 2 } } = 1 $$ | 1 |
516 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \frac{ 9 }{ 8 } } + \dfrac{ y^2}{ \frac{ 16 }{ 9 } } = 1 $$ | 1 |
517 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \frac{ 4 }{ 3 }x^2 + \frac{ 3 }{ 2 }y^2 = 2 $$ | 1 |
518 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 21 } + \dfrac{ \left( y - 4 \right)^2}{ 25 } = 1 $$ | 1 |
519 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 16x^2 + 64y^2 = 4096 $$ | 1 |
520 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 36 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
521 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 25 } = 1 $$ | 1 |
522 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 36 } + \dfrac{ \left( y - 1 \right)^2}{ 16 } = 1 $$ | 1 |
523 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 25 } + \dfrac{ y^2}{ 4 } = 1 $$ | 1 |
524 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 25 } + \dfrac{ \left( y + 3 \right)^2}{ 4 } = 1 $$ | 1 |
525 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 1 \right)^2}{ 16 } + \dfrac{ \left( y - 4 \right)^2}{ 8 } = 1 $$ | 1 |
526 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 9 } + \dfrac{ \left( y - 5 \right)^2}{ 9 } = 1 $$ | 1 |
527 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ \left( y - 3 \right)^2}{ 16 } = 1 $$ | 1 |
528 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ 25x^2 + 4y^2 = 11 $$ | 1 |
529 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 2 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 1 } = 1 $$ | 1 |
530 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 4 } + \dfrac{ \left( y - 1 \right)^2}{ 1 } = 1 $$ | 1 |
531 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 9 } + \dfrac{ \left( y + 1 \right)^2}{ 1 } = 1 $$ | 1 |
532 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 4 } + \dfrac{ \left( y - 2 \right)^2}{ 1 } = 1 $$ | 1 |
533 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 5 } + \dfrac{ \left( y - 3 \right)^2}{ 4 } = 1 $$ | 1 |
534 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 2 \right)^2}{ 1 } + \dfrac{ \left( y + 3 \right)^2}{ 9 } = 1 $$ | 1 |
535 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 81 } + \dfrac{ y^2}{ 25 } = 1 $$ | 1 |
536 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 9 } + \dfrac{ y^2}{ 25 } = 1 $$ | 1 |
537 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 16 } + \dfrac{ \left( y - 3 \right)^2}{ 4 } = 1 $$ | 1 |
538 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 144 } + \dfrac{ y^2}{ 16 } = 1 $$ | 1 |
539 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 4 \right)^2}{ 4 } + \dfrac{ \left( y - 3 \right)^2}{ 9 } = 1 $$ | 1 |
540 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 18 \right)^2}{ 1 } + \dfrac{ \left( y - 14 \right)^2}{ 11 } = 1 $$ | 1 |
541 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x + 3 \right)^2}{ 1 } + \dfrac{ \left( y - 15 \right)^2}{ 11 } = 1 $$ | 1 |
542 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 11 \right)^2}{ 122 } + \dfrac{ y^2}{ 131 } = 1 $$ | 1 |
543 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 15 \right)^2}{ \frac{ 11089 }{ 250 } } + \dfrac{ \left( y - 13 \right)^2}{ \frac{ 109621 }{ 1000 } } = 1 $$ | 1 |
544 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 5 \right)^2}{ 9 } + \dfrac{ \left( y + 2 \right)^2}{ 25 } = 1 $$ | 1 |
545 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 3 \right)^2}{ 16 } + \dfrac{ \left( y + 2 \right)^2}{ 49 } = 1 $$ | 1 |
546 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 15 } + \dfrac{ \left( y - 8 \right)^2}{ 10 } = 1 $$ | 1 |
547 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ \left( x - 1 \right)^2}{ 10 } + \dfrac{ \left( y - 8 \right)^2}{ 15 } = 1 $$ | 1 |
548 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 32 } + \dfrac{ y^2}{ 36 } = 1 $$ | 1 |
549 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ \sqrt{ 7 } } + \dfrac{ y^2}{ \sqrt{ 6 } } = 1 $$ | 1 |
550 | Find foci, vertices, lengths of major and minor axes and the eccentricity of the ellipse:$$ \dfrac{ x^2}{ 49 } + \dfrac{ y^2}{ 36 } = 1 $$ | 1 |