Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
301 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 3 |
302 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~1,~2\right) $ and $ \vec{v_2} = \left(1,~1,~4\right) $ . | 3 |
303 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-3\right) $ and $ \vec{v_2} = \left(-4,~-12\right) $ . | 3 |
304 | Find the sum of the vectors $ \vec{v_1} = \left(10,~0\right) $ and $ \vec{v_2} = \left(10,~-120\right) $ . | 3 |
305 | Find the difference of the vectors $ \vec{v_1} = \left(2,~6\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 3 |
306 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3 \sqrt{ 3 },~-3\right) $ . | 3 |
307 | Find the projection of the vector $ \vec{v_1} = \left(-1,~1\right) $ on the vector $ \vec{v_2} = \left(3,~3\right) $. | 3 |
308 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 69503 }{ 100000 },~0.0652,~\dfrac{ 30519 }{ 3125 }\right) $ and $ \vec{v_2} = \left(0,~0,~\dfrac{ 49 }{ 5 }\right) $ . | 3 |
309 | Find the angle between vectors $ \left(\dfrac{ 69503 }{ 100000 },~0.0652,~\dfrac{ 30519 }{ 3125 }\right)$ and $\left(0,~0,~\dfrac{ 49 }{ 5 }\right)$. | 3 |
310 | Find the difference of the vectors $ \vec{v_1} = \left(1,~2,~1\right) $ and $ \vec{v_2} = \left(4,~3,~-1\right) $ . | 3 |
311 | Find the sum of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(-3,~0\right) $ . | 3 |
312 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~8\right) $ . | 3 |
313 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-2,~-1,~2\right) $ and $ \vec{v_2} = \left(4,~3,~-2\right) $ . | 3 |
314 | Find the angle between vectors $ \left(-2,~5,~-3\right)$ and $\left(4,~-6,~8\right)$. | 3 |
315 | Find the angle between vectors $ \left(1,~-3\right)$ and $\left(5,~\dfrac{ 1 }{ 2 }\right)$. | 3 |
316 | Find the angle between vectors $ \left(-2,~4\right)$ and $\left(8,~-16\right)$. | 3 |
317 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-2\right) $ . | 3 |
318 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~3\right) $ . | 3 |
319 | Find the sum of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(0,~2\right) $ . | 3 |
320 | Find the angle between vectors $ \left(1,~-4\right)$ and $\left(2,~0\right)$. | 3 |
321 | Find the difference of the vectors $ \vec{v_1} = \left(0,~10\right) $ and $ \vec{v_2} = \left(0,~10\right) $ . | 3 |
322 | Find the angle between vectors $ \left(-1,~0\right)$ and $\left(0,~5\right)$. | 3 |
323 | Find the projection of the vector $ \vec{v_1} = \left(-4,~6\right) $ on the vector $ \vec{v_2} = \left(0,~0\right) $. | 3 |
324 | Determine whether the vectors $ \vec{v_1} = \left(3,~-2,~4\right) $, $ \vec{v_2} = \left(1,~-2,~3\right) $ and $ \vec{v_3} = \left(3,~2,~-1\right)$ are linearly independent or dependent. | 3 |
325 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-1\right) $ and $ \vec{v_2} = \left(3,~1\right) $ . | 3 |
326 | Find the sum of the vectors $ \vec{v_1} = \left(-28,~4\right) $ and $ \vec{v_2} = \left(11,~15\right) $ . | 3 |
327 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-5\right) $ and $ \vec{v_2} = \left(-3,~8\right) $ . | 3 |
328 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~1\right) $ and $ \vec{v_2} = \left(1,~8\right) $ . | 3 |
329 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~5\right) $ . | 3 |
330 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~5\right) $ and $ \vec{v_2} = \left(5,~-2\right) $ . | 3 |
331 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 3 }{ 5 },~\dfrac{ 2 }{ 5 }\right) $ . | 3 |
332 | Find the angle between vectors $ \left(5,~-2\right)$ and $\left(-4,~3\right)$. | 3 |
333 | Find the difference of the vectors $ \vec{v_1} = \left(3,~5\right) $ and $ \vec{v_2} = \left(\dfrac{ 22 }{ 5 },~\dfrac{ 11 }{ 5 }\right) $ . | 3 |
334 | Determine whether the vectors $ \vec{v_1} = \left(9,~-7\right) $ and $ \vec{v_2} = \left(-10,~7\right) $ are linearly independent or dependent. | 3 |
335 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~-7\right) $ and $ \vec{v_2} = \left(-10,~7\right) $ . | 3 |
336 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~0,~3\right) $ and $ \vec{v_2} = \left(\dfrac{ 3 }{ 2 },~0,~3\right) $ . | 3 |
337 | Find the difference of the vectors $ \vec{v_1} = \left(-6,~11\right) $ and $ \vec{v_2} = \left(10,~4\right) $ . | 3 |
338 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~3\right) $ . | 3 |
339 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~-4\right) $ . | 3 |
340 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~-2\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 3 |
341 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~4\right) $ and $ \vec{v_2} = \left(-3,~-3\right) $ . | 3 |
342 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-\sqrt{ 3 },~\dfrac{ 3 }{ 2 }\right) $ . | 3 |
343 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-36,~-37\right) $ . | 3 |
344 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 2 },~-\dfrac{ 3 }{ 2 },~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 2 },~-\dfrac{ 1 }{ 2 },~2\right) $ . | 3 |
345 | Find the angle between vectors $ \left(9,~2\right)$ and $\left(-8,~-12\right)$. | 3 |
346 | Find the angle between vectors $ \left(9,~2\right)$ and $\left(12,~-8\right)$. | 3 |
347 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(-7,~6\right) $ . | 3 |
348 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~1\right) $ and $ \vec{v_2} = \left(4,~-5\right) $ . | 3 |
349 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~7\right) $ . | 3 |
350 | Find the angle between vectors $ \left(4,~2\right)$ and $\left(4.4721,~2.2361\right)$. | 3 |