Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
351 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-2\right) $ . | 3 |
352 | Find the sum of the vectors $ \vec{v_1} = \left(12,~9\right) $ and $ \vec{v_2} = \left(-6,~\dfrac{ 1039 }{ 100 }\right) $ . | 3 |
353 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~2\right) $ and $ \vec{v_2} = \left(3,~4\right) $ . | 3 |
354 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~1,~2\right) $ . | 3 |
355 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-2\right) $ . | 3 |
356 | Find the sum of the vectors $ \vec{v_1} = \left(37.8,~39.6\right) $ and $ \vec{v_2} = \left(4.73,~-4.99\right) $ . | 3 |
357 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(2,~10\right) $ . | 3 |
358 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~2\right) $ and $ \vec{v_2} = \left(9,~8\right) $ . | 3 |
359 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~1\right) $ and $ \vec{v_2} = \left(-2,~-5\right) $ . | 3 |
360 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~5\right) $ . | 3 |
361 | Find the sum of the vectors $ \vec{v_1} = \left(-19.05,~11\right) $ and $ \vec{v_2} = \left(-5.73,~-32.5\right) $ . | 3 |
362 | Find the sum of the vectors $ \vec{v_1} = \left(7,~-3\right) $ and $ \vec{v_2} = \left(9,~9\right) $ . | 3 |
363 | Find the projection of the vector $ \vec{v_1} = \left(3020,~2800\right) $ on the vector $ \vec{v_2} = \left(1,~-1\right) $. | 3 |
364 | Find the projection of the vector $ \vec{v_1} = \left(3,~6\right) $ on the vector $ \vec{v_2} = \left(-2,~9\right) $. | 3 |
365 | Find the angle between vectors $ \left(2,~2,~2\right)$ and $\left(1,~-1,~1\right)$. | 3 |
366 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-3\right) $ . | 3 |
367 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~2\right) $ . | 3 |
368 | Determine whether the vectors $ \vec{v_1} = \left(4,~5,~7\right) $, $ \vec{v_2} = \left(6,~7,~6\right) $ and $ \vec{v_3} = \left(-4,~-7,~3\right)$ are linearly independent or dependent. | 3 |
369 | Determine whether the vectors $ \vec{v_1} = \left(2,~-8,~8\right) $, $ \vec{v_2} = \left(16,~-72,~71\right) $ and $ \vec{v_3} = \left(0,~0,~0\right)$ are linearly independent or dependent. | 3 |
370 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~7\right) $ and $ \vec{v_2} = \left(5,~2\right) $ . | 3 |
371 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 39 }{ 10 },~-\dfrac{ 3 }{ 2 }\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 3 |
372 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 21 }{ 10 },~-\dfrac{ 16 }{ 5 }\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 3 |
373 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 231 }{ 10 },~-\dfrac{ 16 }{ 5 }\right) $ . | 3 |
374 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~5\right) $ . | 3 |
375 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~-2,~7\right) $ and $ \vec{v_2} = \left(4,~3,~-2\right) $ . | 3 |
376 | Find the projection of the vector $ \vec{v_1} = \left(1,~1\right) $ on the vector $ \vec{v_2} = \left(6,~3\right) $. | 3 |
377 | Find the angle between vectors $ \left(-3,~-5\right)$ and $\left(-4,~-2\right)$. | 3 |
378 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-6,~-12\right) $ and $ \vec{v_2} = \left(-12,~-15\right) $ . | 3 |
379 | Find the difference of the vectors $ \vec{v_1} = \left(8,~2\right) $ and $ \vec{v_2} = \left(-6,~8\right) $ . | 3 |
380 | Find the difference of the vectors $ \vec{v_1} = \left(-7,~0\right) $ and $ \vec{v_2} = \left(8,~-1\right) $ . | 3 |
381 | Find the projection of the vector $ \vec{v_1} = \left(0,~-5,~7\right) $ on the vector $ \vec{v_2} = \left(-5,~1,~5\right) $. | 3 |
382 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-1,~2\right) $ . | 3 |
383 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(5,~0.5\right) $ . | 3 |
384 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(4,~-3\right) $ . | 3 |
385 | Find the sum of the vectors $ \vec{v_1} = \left(-36,~4\right) $ and $ \vec{v_2} = \left(21,~13\right) $ . | 3 |
386 | Find the sum of the vectors $ \vec{v_1} = \left(2,~5\right) $ and $ \vec{v_2} = \left(4,~7\right) $ . | 3 |
387 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~\sqrt{ 12 }\right) $ . | 3 |
388 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 3 |
389 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~2\right) $ and $ \vec{v_2} = \left(-1,~5\right) $ . | 3 |
390 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-2\right) $ and $ \vec{v_2} = \left(5,~1\right) $ . | 3 |
391 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~1\right) $ . | 3 |
392 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 5 }{ 13 },~\dfrac{ 12 }{ 13 }\right) $ . | 3 |
393 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~3\right) $ . | 3 |
394 | Find the difference of the vectors $ \vec{v_1} = \left(-24,~21\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 3 |
395 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~8\right) $ . | 3 |
396 | Find the angle between vectors $ \left(4,~1\right)$ and $\left(1,~4\right)$. | 3 |
397 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~0\right) $ . | 3 |
398 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~3\right) $ . | 3 |
399 | Find the sum of the vectors $ \vec{v_1} = \left(-7,~1\right) $ and $ \vec{v_2} = \left(11,~15\right) $ . | 3 |
400 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~0\right) $ . | 3 |