Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
251 | | 3 |
252 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~4\right) $ and $ \vec{v_2} = \left(-4,~2\right) $ . | 3 |
253 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~5\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 3 |
254 | Find the angle between vectors $ \left(5,~6\right)$ and $\left(4,~2\right)$. | 3 |
255 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~3\right) $ and $ \vec{v_2} = \left(-3,~5\right) $ . | 3 |
256 | Find the angle between vectors $ \left(-5,~2\right)$ and $\left(10,~4\right)$. | 3 |
257 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~-1\right) $ and $ \vec{v_2} = \left(-4,~2\right) $ . | 3 |
258 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{\sqrt{ 3 }}{ 2 },~\dfrac{ 1 }{ 2 }\right) $ and $ \vec{v_2} = \left(- \dfrac{\sqrt{ 2 }}{ 2 },~- \dfrac{\sqrt{ 2 }}{ 2 }\right) $ . | 3 |
259 | Find the sum of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(-8,~5\right) $ . | 3 |
260 | Find the angle between vectors $ \left(\dfrac{\sqrt{ 3 }}{ 2 },~\dfrac{ 1 }{ 2 }\right)$ and $\left(- \dfrac{\sqrt{ 2 }}{ 2 },~- \dfrac{\sqrt{ 2 }}{ 2 }\right)$. | 3 |
261 | Find the angle between vectors $ \left(-10,~5\right)$ and $\left(-9,~-10\right)$. | 3 |
262 | Find the angle between vectors $ \left(8,~5\right)$ and $\left(5,~-8\right)$. | 3 |
263 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~0\right) $ . | 3 |
264 | Find the difference of the vectors $ \vec{v_1} = \left(-\dfrac{ 3 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ and $ \vec{v_2} = \left(8,~26\right) $ . | 3 |
265 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-15,~5\right) $ . | 3 |
266 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~2\right) $ . | 3 |
267 | Determine whether the vectors $ \vec{v_1} = \left(-7,~7\right) $ and $ \vec{v_2} = \left(1,~22\right) $ are linearly independent or dependent. | 3 |
268 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~14\right) $ and $ \vec{v_2} = \left(1,~4\right) $ . | 3 |
269 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~2\right) $ . | 3 |
270 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~3\right) $ and $ \vec{v_2} = \left(2,~4\right) $ . | 3 |
271 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~0\right) $ and $ \vec{v_2} = \left(5,~8\right) $ . | 3 |
272 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(5,~1\right) $ . | 3 |
273 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1,~1\right) $ and $ \vec{v_2} = \left(1,~1,~1\right) $ . | 3 |
274 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~2\right) $ . | 3 |
275 | Find the angle between vectors $ \left(9,~2\right)$ and $\left(3,~1\right)$. | 3 |
276 | Find the projection of the vector $ \vec{v_1} = \left(5,~-5,~2\right) $ on the vector $ \vec{v_2} = \left(1,~1,~5\right) $. | 3 |
277 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~-2\right) $ and $ \vec{v_2} = \left(4,~-1\right) $ . | 3 |
278 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 3 |
279 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(1,~2\right) $ . | 3 |
280 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-7\right) $ and $ \vec{v_2} = \left(-13,~12\right) $ . | 3 |
281 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(\dfrac{ 34641 }{ 20000 },~3\right) $ . | 3 |
282 | Find the angle between vectors $ \left(9,~-7\right)$ and $\left(8,~3\right)$. | 3 |
283 | Find the difference of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(6,~5\right) $ . | 3 |
284 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~-4\right) $ . | 3 |
285 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-2\right) $ . | 3 |
286 | Find the angle between vectors $ \left(3,~7\right)$ and $\left(-4,~-1\right)$. | 3 |
287 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-2,~7,~-9\right) $ and $ \vec{v_2} = \left(-11,~9,~-2\right) $ . | 3 |
288 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~7\right) $ . | 3 |
289 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-3\right) $ . | 3 |
290 | Find the angle between vectors $ \left(3,~-2\right)$ and $\left(5,~1\right)$. | 3 |
291 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~8\right) $ and $ \vec{v_2} = \left(-4,~-6\right) $ . | 3 |
292 | Find the angle between vectors $ \left(7,~-1\right)$ and $\left(2,~2\right)$. | 3 |
293 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~5\right) $ . | 3 |
294 | Determine whether the vectors $ \vec{v_1} = \left(-\sqrt{ 160 },~\sqrt{ 40 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 6 }{ 5 },~\dfrac{ 3 }{ 5 }\right) $ are linearly independent or dependent. | 3 |
295 | Find the angle between vectors $ \left(2,~10\right)$ and $\left(5,~-2\right)$. | 3 |
296 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-1\right) $ . | 3 |
297 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-4\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 3 |
298 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-6\right) $ and $ \vec{v_2} = \left(-15,~8\right) $ . | 3 |
299 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 173 }{ 10 },~10\right) $ and $ \vec{v_2} = \left(-\dfrac{ 63 }{ 10 },~\dfrac{ 68 }{ 5 }\right) $ . | 3 |
300 | Find the sum of the vectors $ \vec{v_1} = \left(-4,~8\right) $ and $ \vec{v_2} = \left(-5,~5\right) $ . | 3 |