Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
2251 | Find the difference of the vectors $ \vec{v_1} = \left(4,~3\right) $ and $ \vec{v_2} = \left(3,~5\right) $ . | 2 |
2252 | Find the angle between vectors $ \left(6,~1\right)$ and $\left(4,~2\right)$. | 2 |
2253 | Determine whether the vectors $ \vec{v_1} = \left(-3,~1\right) $ and $ \vec{v_2} = \left(8,~-6\right) $ are linearly independent or dependent. | 2 |
2254 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 4 }{ 5 },~-\dfrac{ 8 }{ 5 }\right) $ and $ \vec{v_2} = \left(4,~2\right) $ . | 2 |
2255 | Find the sum of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(-7,~2\right) $ . | 2 |
2256 | Find the sum of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(7,~2\right) $ . | 2 |
2257 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~-4\right) $ . | 2 |
2258 | Find the projection of the vector $ \vec{v_1} = \left(3,~3\right) $ on the vector $ \vec{v_2} = \left(5,~1\right) $. | 2 |
2259 | Find the projection of the vector $ \vec{v_1} = \left(3,~6\right) $ on the vector $ \vec{v_2} = \left(8,~-4\right) $. | 2 |
2260 | Find the projection of the vector $ \vec{v_1} = \left(-1,~-2\right) $ on the vector $ \vec{v_2} = \left(0,~5\right) $. | 2 |
2261 | Find the angle between vectors $ \left(-1,~-2\right)$ and $\left(0,~5\right)$. | 2 |
2262 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right) $ . | 2 |
2263 | Find the magnitude of the vector $ \| \vec{v} \| = \left(- \dfrac{\sqrt{ 2 }}{ 2 },~\dfrac{\sqrt{ 2 }}{ 2 }\right) $ . | 2 |
2264 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 2 },~\dfrac{ 31 }{ 5 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 22 }{ 5 },~\dfrac{ 73 }{ 10 }\right) $ . | 2 |
2265 | Find the angle between vectors $ \left(- \dfrac{\sqrt{ 2 }}{ 2 },~\dfrac{\sqrt{ 2 }}{ 2 }\right)$ and $\left(\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right)$. | 2 |
2266 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~5\right) $ and $ \vec{v_2} = \left(4,~2\right) $ . | 2 |
2267 | Find the magnitude of the vector $ \| \vec{v} \| = \left(11,~11 \sqrt{ 3 }\right) $ . | 2 |
2268 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~-3\right) $ and $ \vec{v_2} = \left(-7,~5\right) $ . | 2 |
2269 | Find the projection of the vector $ \vec{v_1} = \left(0,~0,~0\right) $ on the vector $ \vec{v_2} = \left(0,~0,~0\right) $. | 2 |
2270 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~5\right) $ . | 2 |
2271 | Find the sum of the vectors $ \vec{v_1} = \left(4,~8\right) $ and $ \vec{v_2} = \left(4,~-7\right) $ . | 2 |
2272 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~1\right) $ and $ \vec{v_2} = \left(8,~1\right) $ . | 2 |
2273 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(-3,~-1\right) $ . | 2 |
2274 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-8\right) $ . | 2 |
2275 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-\sqrt{ 3 },~-4\right) $ and $ \vec{v_2} = \left(-1,~4 \sqrt{ 3 }\right) $ . | 2 |
2276 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~1\right) $ . | 2 |
2277 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~1\right) $ and $ \vec{v_2} = \left(1,~6\right) $ . | 2 |
2278 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-2\right) $ and $ \vec{v_2} = \left(-4,~3\right) $ . | 2 |
2279 | Find the difference of the vectors $ \vec{v_1} = \left(-8,~-6\right) $ and $ \vec{v_2} = \left(9,~7\right) $ . | 2 |
2280 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~5\right) $ and $ \vec{v_2} = \left(9,~-8\right) $ . | 2 |
2281 | Find the difference of the vectors $ \vec{v_1} = \left(2,~5\right) $ and $ \vec{v_2} = \left(-4,~1\right) $ . | 2 |
2282 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~6\right) $ and $ \vec{v_2} = \left(6,~4\right) $ . | 2 |
2283 | Find the difference of the vectors $ \vec{v_1} = \left(10,~0\right) $ and $ \vec{v_2} = \left(0,~2\right) $ . | 2 |
2284 | Find the sum of the vectors $ \vec{v_1} = \left(6,~-3\right) $ and $ \vec{v_2} = \left(-4,~6\right) $ . | 2 |
2285 | Find the difference of the vectors $ \vec{v_1} = \left(2,~3\right) $ and $ \vec{v_2} = \left(18,~-9\right) $ . | 2 |
2286 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~3,~0\right) $ and $ \vec{v_2} = \left(1,~0,~7\right) $ . | 2 |
2287 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~0\right) $ and $ \vec{v_2} = \left(9,~9\right) $ . | 2 |
2288 | Find the angle between vectors $ \left(3,~0\right)$ and $\left(9,~9\right)$. | 2 |
2289 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~-3\right) $ and $ \vec{v_2} = \left(5,~3\right) $ . | 2 |
2290 | Find the angle between vectors $ \left(9,~-3\right)$ and $\left(5,~3\right)$. | 2 |
2291 | Find the difference of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(3,~3\right) $ . | 2 |
2292 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~2,~-2\right) $ and $ \vec{v_2} = \left(0,~2,~5\right) $ . | 2 |
2293 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~0,~2\right) $ and $ \vec{v_2} = \left(3,~2,~-2\right) $ . | 2 |
2294 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~-\dfrac{ 6 }{ 5 }\right) $ . | 2 |
2295 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-6,~8\right) $ and $ \vec{v_2} = \left(-3,~9\right) $ . | 2 |
2296 | Find the angle between vectors $ \left(-1,~1\right)$ and $\left(3,~-3\right)$. | 2 |
2297 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~4\right) $ . | 2 |
2298 | Find the angle between vectors $ \left(200,~0\right)$ and $\left(0,~20\right)$. | 2 |
2299 | Find the magnitude of the vector $ \| \vec{v} \| = \left(200,~0\right) $ . | 2 |
2300 | Calculate the dot product of the vectors $ \vec{v_1} = \left(200,~0\right) $ and $ \vec{v_2} = \left(0,~20\right) $ . | 2 |