Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
2301 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~4\right) $ . | 2 |
2302 | Find the angle between vectors $ \left(4,~4\right)$ and $\left(8,~-2\right)$. | 2 |
2303 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-3,~2,~-4\right) $ and $ \vec{v_2} = \left(-3,~-4,~-5\right) $ . | 2 |
2304 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~12\right) $ . | 2 |
2305 | Find the sum of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 4 }\right) $ . | 2 |
2306 | Find the sum of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right) $ . | 2 |
2307 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-3\right) $ and $ \vec{v_2} = \left(-3,~-4\right) $ . | 2 |
2308 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~0\right) $ and $ \vec{v_2} = \left(5,~0\right) $ . | 2 |
2309 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~0\right) $ and $ \vec{v_2} = \left(4,~-9\right) $ . | 2 |
2310 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~6\right) $ and $ \vec{v_2} = \left(2,~3\right) $ . | 2 |
2311 | Find the difference of the vectors $ \vec{v_1} = \left(8,~9\right) $ and $ \vec{v_2} = \left(9,~7\right) $ . | 2 |
2312 | Find the projection of the vector $ \vec{v_1} = \left(-2,~2\right) $ on the vector $ \vec{v_2} = \left(0,~-4\right) $. | 2 |
2313 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-4\right) $ . | 2 |
2314 | Find the sum of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(2,~-7\right) $ . | 2 |
2315 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-7,~-2\right) $ . | 2 |
2316 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~3\right) $ and $ \vec{v_2} = \left(4,~5,~6\right) $ . | 2 |
2317 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~1,~2\right) $ and $ \vec{v_2} = \left(-1,~5,~-2\right) $ . | 2 |
2318 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~1,~2\right) $ and $ \vec{v_2} = \left(-1,~5,~-2\right) $ . | 2 |
2319 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~6\right) $ . | 2 |
2320 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 87 }{ 10 },~5\right) $ and $ \vec{v_2} = \left(\dfrac{ 43 }{ 10 },~\dfrac{ 5 }{ 2 }\right) $ . | 2 |
2321 | Find the angle between vectors $ \left(\dfrac{ 87 }{ 10 },~5\right)$ and $\left(\dfrac{ 43 }{ 10 },~\dfrac{ 5 }{ 2 }\right)$. | 2 |
2322 | Find the angle between vectors $ \left(2,~5\right)$ and $\left(5,~-2\right)$. | 2 |
2323 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\sqrt{ 3 },~3\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 2 |
2324 | Find the angle between vectors $ \left(\sqrt{ 3 },~3\right)$ and $\left(1,~1\right)$. | 2 |
2325 | Find the projection of the vector $ \vec{v_1} = \left(\sqrt{ 3 },~-1\right) $ on the vector $ \vec{v_2} = \left(0,~0\right) $. | 2 |
2326 | Find the projection of the vector $ \vec{v_1} = \left(\sqrt{ 3 },~-1\right) $ on the vector $ \vec{v_2} = \left(-1,~1\right) $. | 2 |
2327 | Find the angle between vectors $ \left(\sqrt{ 3 },~-1\right)$ and $\left(-1,~1\right)$. | 2 |
2328 | Find the angle between vectors $ \left(-\sqrt{ 3 },~-1\right)$ and $\left(-1,~1\right)$. | 2 |
2329 | Find the angle between vectors $ \left(\sqrt{ 3 },~-3\right)$ and $\left(1,~-1\right)$. | 2 |
2330 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\sqrt{ 3 },~-3\right) $ and $ \vec{v_2} = \left(1,~-1\right) $ . | 2 |
2331 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~0\right) $ and $ \vec{v_2} = \left(1,~0\right) $ . | 2 |
2332 | Find the angle between vectors $ \left(-3,~0\right)$ and $\left(1,~0\right)$. | 2 |
2333 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~-4\right) $ . | 2 |
2334 | Find the projection of the vector $ \vec{v_1} = \left(7.07,~7.07\right) $ on the vector $ \vec{v_2} = \left(2.99,~7.42\right) $. | 2 |
2335 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-2\right) $ . | 2 |
2336 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~-2\right) $ and $ \vec{v_2} = \left(5,~4\right) $ . | 2 |
2337 | Find the sum of the vectors $ \vec{v_1} = \left(0,~4\right) $ and $ \vec{v_2} = \left(5,~4\right) $ . | 2 |
2338 | Find the difference of the vectors $ \vec{v_1} = \left(0,~4\right) $ and $ \vec{v_2} = \left(5,~4\right) $ . | 2 |
2339 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 2 }{ 5 },~\dfrac{ 1 }{ 5 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 3 }{ 5 },~\dfrac{ 2 }{ 5 }\right) $ . | 2 |
2340 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 2 }{ 5 },~\dfrac{ 1 }{ 5 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 3 }{ 5 },~\dfrac{ 2 }{ 5 }\right) $ . | 2 |
2341 | Find the angle between vectors $ \left(6,~11\right)$ and $\left(3,~4\right)$. | 2 |
2342 | Find the angle between vectors $ \left(5,~-5\right)$ and $\left(-4,~-3\right)$. | 2 |
2343 | Find the angle between vectors $ \left(-5,~0\right)$ and $\left(4,~-2\right)$. | 2 |
2344 | Find the angle between vectors $ \left(-5,~3\right)$ and $\left(4,~-2\right)$. | 2 |
2345 | Find the angle between vectors $ \left(-1,~-5\right)$ and $\left(5,~1\right)$. | 2 |
2346 | Find the angle between vectors $ \left(4,~2\right)$ and $\left(-5,~1\right)$. | 2 |
2347 | Find the angle between vectors $ \left(1,~3\right)$ and $\left(4,~-3\right)$. | 2 |
2348 | Find the angle between vectors $ \left(1,~3\right)$ and $\left(-4,~-3\right)$. | 2 |
2349 | Find the angle between vectors $ \left(-5,~-1\right)$ and $\left(-5,~-1\right)$. | 2 |
2350 | Find the angle between vectors $ \left(1,~-4\right)$ and $\left(-2,~0\right)$. | 2 |