Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
2201 | Find the sum of the vectors $ \vec{v_1} = \left(8,~7\right) $ and $ \vec{v_2} = \left(-2,~-4\right) $ . | 2 |
2202 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~4\right) $ and $ \vec{v_2} = \left(-6,~2\right) $ . | 2 |
2203 | Find the sum of the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(5,~4\right) $ . | 2 |
2204 | Find the difference of the vectors $ \vec{v_1} = \left(4,~5\right) $ and $ \vec{v_2} = \left(5,~4\right) $ . | 2 |
2205 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 5 },~\dfrac{ 2 }{ 5 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 3 }{ 10 },~\dfrac{ 7 }{ 10 }\right) $ . | 2 |
2206 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 9 }{ 10 },~\dfrac{ 1 }{ 10 }\right) $ . | 2 |
2207 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 9 }{ 10 },~\dfrac{ 1 }{ 10 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 4 }{ 5 },~\dfrac{ 1 }{ 5 }\right) $ . | 2 |
2208 | Find the difference of the vectors $ \vec{v_1} = \left(\dfrac{ 9 }{ 10 },~\dfrac{ 1 }{ 10 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 4 }{ 5 },~\dfrac{ 1 }{ 5 }\right) $ . | 2 |
2209 | Find the angle between vectors $ \left(\dfrac{ 9 }{ 10 },~\dfrac{ 1 }{ 10 }\right)$ and $\left(\dfrac{ 4 }{ 5 },~\dfrac{ 1 }{ 5 }\right)$. | 2 |
2210 | Determine whether the vectors $ \vec{v_1} = \left(\dfrac{ 9 }{ 10 },~\dfrac{ 1 }{ 10 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 4 }{ 5 },~\dfrac{ 1 }{ 5 }\right) $ are linearly independent or dependent. | 2 |
2211 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 5 },~\dfrac{ 2 }{ 5 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 3 }{ 10 },~\dfrac{ 7 }{ 10 }\right) $ . | 2 |
2212 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1210,~0\right) $ . | 2 |
2213 | Find the sum of the vectors $ \vec{v_1} = \left(1210,~0\right) $ and $ \vec{v_2} = \left(395.993,~1477.87\right) $ . | 2 |
2214 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-4\right) $ and $ \vec{v_2} = \left(5,~2\right) $ . | 2 |
2215 | Find the angle between vectors $ \left(0,~4\right)$ and $\left(-4,~3\right)$. | 2 |
2216 | Find the projection of the vector $ \vec{v_1} = \left(-1,~8\right) $ on the vector $ \vec{v_2} = \left(9,~6\right) $. | 2 |
2217 | Find the projection of the vector $ \vec{v_1} = \left(-4,~-7\right) $ on the vector $ \vec{v_2} = \left(3,~-8\right) $. | 2 |
2218 | Find the projection of the vector $ \vec{v_1} = \left(-2,~6\right) $ on the vector $ \vec{v_2} = \left(1,~6\right) $. | 2 |
2219 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(1,~4\right) $ . | 2 |
2220 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(-1,~4\right) $ . | 2 |
2221 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 1 }{ 2 },~3\right) $ and $ \vec{v_2} = \left(4,~2\right) $ . | 2 |
2222 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\sqrt{ 2 },~-\dfrac{ 1 }{ 2 }\right) $ . | 2 |
2223 | Find the angle between vectors $ \left(5,~-1\right)$ and $\left(3,~1\right)$. | 2 |
2224 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~6\right) $ . | 2 |
2225 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~7\right) $ . | 2 |
2226 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(1,~3\right) $ . | 2 |
2227 | Find the angle between vectors $ \left(5,~2\right)$ and $\left(-5,~2\right)$. | 2 |
2228 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~2,~1\right) $ and $ \vec{v_2} = \left(1,~0,~3\right) $ . | 2 |
2229 | Find the angle between vectors $ \left(8,~6\right)$ and $\left(3,~-4\right)$. | 2 |
2230 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-23\right) $ . | 2 |
2231 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~-5\right) $ . | 2 |
2232 | Find the sum of the vectors $ \vec{v_1} = \left(-2,~7\right) $ and $ \vec{v_2} = \left(4,~-5\right) $ . | 2 |
2233 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~-2\right) $ and $ \vec{v_2} = \left(-4,~-4\right) $ . | 2 |
2234 | Determine whether the vectors $ \vec{v_1} = \left(4,~3\right) $ and $ \vec{v_2} = \left(2,~3\right) $ are linearly independent or dependent. | 2 |
2235 | Find the magnitude of the vector $ \| \vec{v} \| = \left(250,~140\right) $ . | 2 |
2236 | Find the sum of the vectors $ \vec{v_1} = \left(3,~-9\right) $ and $ \vec{v_2} = \left(8,~4\right) $ . | 2 |
2237 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(7,~2\right) $ . | 2 |
2238 | Find the sum of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(-3,~-5\right) $ . | 2 |
2239 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-7\right) $ . | 2 |
2240 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-1\right) $ and $ \vec{v_2} = \left(-5,~4\right) $ . | 2 |
2241 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~5\right) $ and $ \vec{v_2} = \left(5,~7\right) $ . | 2 |
2242 | Find the angle between vectors $ \left(4,~5\right)$ and $\left(6,~7\right)$. | 2 |
2243 | Find the sum of the vectors $ \vec{v_1} = \left(-\dfrac{ 13 }{ 5 },~\dfrac{ 9 }{ 2 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 27 }{ 10 },~-\dfrac{ 1 }{ 10 }\right) $ . | 2 |
2244 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-\dfrac{ 13 }{ 5 },~\dfrac{ 9 }{ 2 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 13 }{ 5 },~\dfrac{ 22 }{ 5 }\right) $ . | 2 |
2245 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~\sqrt{ 3 }\right) $ and $ \vec{v_2} = \left(-1,~\sqrt{ 3 }\right) $ . | 2 |
2246 | Find the projection of the vector $ \vec{v_1} = \left(1,~\sqrt{ 3 }\right) $ on the vector $ \vec{v_2} = \left(-1,~\sqrt{ 3 }\right) $. | 2 |
2247 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~7\right) $ . | 2 |
2248 | Find the angle between vectors $ \left(1,~\sqrt{ 3 }\right)$ and $\left(-1,~\sqrt{ 3 }\right)$. | 2 |
2249 | Find the difference of the vectors $ \vec{v_1} = \left(1,~\sqrt{ 3 }\right) $ and $ \vec{v_2} = \left(-\dfrac{ 1 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right) $ . | 2 |
2250 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 2 },~\dfrac{\sqrt{ 3 }}{ 2 }\right) $ and $ \vec{v_2} = \left(-1,~\sqrt{ 3 }\right) $ . | 2 |