Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
2151 | Find the difference of the vectors $ \vec{v_1} = \left(9,~-3\right) $ and $ \vec{v_2} = \left(-8,~-3\right) $ . | 2 |
2152 | Find the angle between vectors $ \left(3,~5,~-7\right)$ and $\left(-3,~4,~-2\right)$. | 2 |
2153 | Calculate the dot product of the vectors $ \vec{v_1} = \left(11,~1\right) $ and $ \vec{v_2} = \left(11,~1\right) $ . | 2 |
2154 | Find the angle between vectors $ \left(2,~0\right)$ and $\left(2,~3\right)$. | 2 |
2155 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~-10,~5\right) $ and $ \vec{v_2} = \left(0,~-1.688,~4.24\right) $ . | 2 |
2156 | Find the projection of the vector $ \vec{v_1} = \left(6,~17\right) $ on the vector $ \vec{v_2} = \left(11,~-11\right) $. | 2 |
2157 | Determine whether the vectors $ \vec{v_1} = \left(6,~17\right) $ and $ \vec{v_2} = \left(11,~-11\right) $ are linearly independent or dependent. | 2 |
2158 | Determine whether the vectors $ \vec{v_1} = \left(1,~1,~0\right) $, $ \vec{v_2} = \left(1,~2,~1\right) $ and $ \vec{v_3} = \left(0,~1,~1\right)$ are linearly independent or dependent. | 2 |
2159 | Find the sum of the vectors $ \vec{v_1} = \left(4,~-1\right) $ and $ \vec{v_2} = \left(7,~5\right) $ . | 2 |
2160 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~6\right) $ and $ \vec{v_2} = \left(1,~-6\right) $ . | 2 |
2161 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~-4\right) $ . | 2 |
2162 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~3\right) $ . | 2 |
2163 | Find the sum of the vectors $ \vec{v_1} = \left(5,~-3\right) $ and $ \vec{v_2} = \left(-5,~7\right) $ . | 2 |
2164 | Find the sum of the vectors $ \vec{v_1} = \left(3,~-2\right) $ and $ \vec{v_2} = \left(4,~1\right) $ . | 2 |
2165 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~4\right) $ and $ \vec{v_2} = \left(3,~6\right) $ . | 2 |
2166 | Find the angle between vectors $ \left(-7,~3\right)$ and $\left(9,~1\right)$. | 2 |
2167 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-\sqrt{ 3 },~\dfrac{ 3 }{ 2 }\right) $ and $ \vec{v_2} = \left(\sqrt{ 2 },~1,~\dfrac{ 2 }{ 3 }\right) $ . | 2 |
2168 | Find the angle between vectors $ \left(1,~-\sqrt{ 3 },~\dfrac{ 3 }{ 2 }\right)$ and $\left(\sqrt{ 2 },~1,~\dfrac{ 2 }{ 3 }\right)$. | 2 |
2169 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~5\right) $ and $ \vec{v_2} = \left(-6,~-6\right) $ . | 2 |
2170 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-3\right) $ and $ \vec{v_2} = \left(-3,~-1\right) $ . | 2 |
2171 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~5\right) $ . | 2 |
2172 | Find the difference of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(-7,~6\right) $ . | 2 |
2173 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-1,~0\right) $ and $ \vec{v_2} = \left(1,~-2,~2\right) $ . | 2 |
2174 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-2,~2\right) $ and $ \vec{v_2} = \left(0,~1,~-2\right) $ . | 2 |
2175 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~-4,~0\right) $ and $ \vec{v_2} = \left(-3,~8,~0\right) $ . | 2 |
2176 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~2\right) $ and $ \vec{v_2} = \left(-1,~-1\right) $ . | 2 |
2177 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-7,~2\right) $ and $ \vec{v_2} = \left(-1,~-3\right) $ . | 2 |
2178 | Find the sum of the vectors $ \vec{v_1} = \left(-9,~9\right) $ and $ \vec{v_2} = \left(-4,~-5\right) $ . | 2 |
2179 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~-3\right) $ . | 2 |
2180 | Find the angle between vectors $ \left(-6,~3\right)$ and $\left(3,~5\right)$. | 2 |
2181 | Find the projection of the vector $ \vec{v_1} = \left(6,~9\right) $ on the vector $ \vec{v_2} = \left(3,~-2\right) $. | 2 |
2182 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~1\right) $ and $ \vec{v_2} = \left(2,~-4\right) $ . | 2 |
2183 | Calculate the dot product of the vectors $ \vec{v_1} = \left(15,~15\right) $ and $ \vec{v_2} = \left(-5,~4\right) $ . | 2 |
2184 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~4\right) $ and $ \vec{v_2} = \left(-7,~1\right) $ . | 2 |
2185 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~2\right) $ and $ \vec{v_2} = \left(4,~4\right) $ . | 2 |
2186 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~2\right) $ and $ \vec{v_2} = \left(4,~-1\right) $ . | 2 |
2187 | Find the difference of the vectors $ \vec{v_1} = \left(2,~7\right) $ and $ \vec{v_2} = \left(6,~3\right) $ . | 2 |
2188 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~3\right) $ . | 2 |
2189 | Find the difference of the vectors $ \vec{v_1} = \left(1,~3\right) $ and $ \vec{v_2} = \left(0,~2\right) $ . | 2 |
2190 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~3\right) $ and $ \vec{v_2} = \left(0,~2\right) $ . | 2 |
2191 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-24,~7\right) $ . | 2 |
2192 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~24\right) $ . | 2 |
2193 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-3\right) $ and $ \vec{v_2} = \left(-1,~2\right) $ . | 2 |
2194 | Calculate the cross product of the vectors $ \vec{v_1} = \left(\dfrac{ 23 }{ 5 },~-\dfrac{ 41 }{ 5 },~\dfrac{ 49 }{ 5 }\right) $ and $ \vec{v_2} = \left(-9,~-\dfrac{ 33 }{ 10 },~\dfrac{ 22 }{ 5 }\right) $ . | 2 |
2195 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~\dfrac{ 9 }{ 2 },~2\right) $ and $ \vec{v_2} = \left(0,~\dfrac{ 13 }{ 5 },~\dfrac{ 13 }{ 5 }\right) $ . | 2 |
2196 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~4.5,~2\right) $ and $ \vec{v_2} = \left(0,~2.6,~2.6\right) $ . | 2 |
2197 | Find the angle between vectors $ \left(9,~-7\right)$ and $\left(-10,~7\right)$. | 2 |
2198 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-1\right) $ . | 2 |
2199 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~0,~6\right) $ and $ \vec{v_2} = \left(-25.44,~-13.36,~20.44\right) $ . | 2 |
2200 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~\dfrac{ 129 }{ 25 },~-\dfrac{ 203 }{ 50 }\right) $ and $ \vec{v_2} = \left(\dfrac{ 379 }{ 100 },~0,~-\dfrac{ 561 }{ 100 }\right) $ . | 2 |