Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
2101 | Find the projection of the vector $ \vec{v_1} = \left(4,~1\right) $ on the vector $ \vec{v_2} = \left(2,~5\right) $. | 2 |
2102 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~1\right) $ and $ \vec{v_2} = \left(2,~5\right) $ . | 2 |
2103 | Find the angle between vectors $ \left(4,~1\right)$ and $\left(2,~5\right)$. | 2 |
2104 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-6,~3\right) $ . | 2 |
2105 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~3\right) $ . | 2 |
2106 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-5,~7\right) $ and $ \vec{v_2} = \left(-1,~-6\right) $ . | 2 |
2107 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~7\right) $ . | 2 |
2108 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~1,~-2\right) $ . | 2 |
2109 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2000,~45\right) $ . | 2 |
2110 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(-2,~6\right) $ . | 2 |
2111 | Calculate the cross product of the vectors $ \vec{v_1} = \left(3,~1,~2\right) $ and $ \vec{v_2} = \left(2,~4,~2\right) $ . | 2 |
2112 | Find the angle between vectors $ \left(3,~1,~2\right)$ and $\left(2,~4,~2\right)$. | 2 |
2113 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-4\right) $ and $ \vec{v_2} = \left(-2,~-1\right) $ . | 2 |
2114 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-4\right) $ and $ \vec{v_2} = \left(6,~-4\right) $ . | 2 |
2115 | Calculate the dot product of the vectors $ \vec{v_1} = \left(240,~310\right) $ and $ \vec{v_2} = \left(\dfrac{ 14 }{ 5 },~\dfrac{ 74 }{ 25 }\right) $ . | 2 |
2116 | Find the sum of the vectors $ \vec{v_1} = \left(7,~1\right) $ and $ \vec{v_2} = \left(-5,~-3\right) $ . | 2 |
2117 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 4 },~2\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 2 |
2118 | Find the angle between vectors $ \left(2,~-5\right)$ and $\left(-3,~8\right)$. | 2 |
2119 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-1\right) $ . | 2 |
2120 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~-1\right) $ and $ \vec{v_2} = \left(3,~3\right) $ . | 2 |
2121 | Find the sum of the vectors $ \vec{v_1} = \left(3,~1\right) $ and $ \vec{v_2} = \left(-2,~-5\right) $ . | 2 |
2122 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~-4\right) $ and $ \vec{v_2} = \left(2,~-2\right) $ . | 2 |
2123 | Find the sum of the vectors $ \vec{v_1} = \left(3130,~108\right) $ and $ \vec{v_2} = \left(2860,~168\right) $ . | 2 |
2124 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3130,~108\right) $ . | 2 |
2125 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~3\right) $ . | 2 |
2126 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~1\right) $ . | 2 |
2127 | Find the magnitude of the vector $ \| \vec{v} \| = \left(30,~12\right) $ . | 2 |
2128 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~0\right) $ . | 2 |
2129 | Find the angle between vectors $ \left(4,~-8\right)$ and $\left(-2,~4\right)$. | 2 |
2130 | Determine whether the vectors $ \vec{v_1} = \left(4,~-8\right) $ and $ \vec{v_2} = \left(-2,~4\right) $ are linearly independent or dependent. | 2 |
2131 | Find the sum of the vectors $ \vec{v_1} = \left(4,~-7\right) $ and $ \vec{v_2} = \left(-2,~6\right) $ . | 2 |
2132 | Find the sum of the vectors $ \vec{v_1} = \left(1,~4\right) $ and $ \vec{v_2} = \left(-2,~5\right) $ . | 2 |
2133 | Find the angle between vectors $ \left(1,~5,~-1\right)$ and $\left(5,~-1,~1\right)$. | 2 |
2134 | Find the angle between vectors $ \left(1,~5,~-1\right)$ and $\left(-1,~1,~4\right)$. | 2 |
2135 | Find the angle between vectors $ \left(1,~5,~-1\right)$ and $\left(-1,~-1,~5\right)$. | 2 |
2136 | Find the angle between vectors $ \left(-5,~-1,~1\right)$ and $\left(5,~-1,~1\right)$. | 2 |
2137 | Find the angle between vectors $ \left(-5,~-1,~1\right)$ and $\left(-1,~1,~4\right)$. | 2 |
2138 | Find the angle between vectors $ \left(5,~-1,~1\right)$ and $\left(-1,~1,~4\right)$. | 2 |
2139 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-7,~4\right) $ . | 2 |
2140 | Find the angle between vectors $ \left(-7,~4\right)$ and $\left(-1,~-4\right)$. | 2 |
2141 | Find the sum of the vectors $ \vec{v_1} = \left(3,~-2\right) $ and $ \vec{v_2} = \left(-3,~-4\right) $ . | 2 |
2142 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~2\right) $ and $ \vec{v_2} = \left(-3,~7\right) $ . | 2 |
2143 | Find the angle between vectors $ \left(9,~-8\right)$ and $\left(2,~-12\right)$. | 2 |
2144 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~-11\right) $ . | 2 |
2145 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~6\right) $ . | 2 |
2146 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~5\right) $ . | 2 |
2147 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3130,~108\right) $ . | 2 |
2148 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~6\right) $ and $ \vec{v_2} = \left(-3,~8\right) $ . | 2 |
2149 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-4\right) $ and $ \vec{v_2} = \left(-3,~8\right) $ . | 2 |
2150 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~1\right) $ . | 2 |